Evolutionary Algorithms and Hyper-

— Heuristics

QQ

b,
7@' % Nelishia Pillay
; School of Mathematics, Statistics and Computer Science
8 University of KwaZulu-Natal
- South Africa

N1C O G XA i RS o

Q?} = VC DNgress on
NQ L. olutionary
Y omputatic

-~ Tutorial Site

http://titancs.ukzn.ac.za/CEC2017.aspx

© | Qutline

« ® | « Introduction

* An overview of hyper-heuristics
% * Low-level heuristics
2 Classification of hyper-heuristics

»| » Evolutionary algorithm hyper-heuristics
/ * Overview

» Selection hyper-heuristics

» Generation hyper-heuristics

» Challenges

| * EvoHyp
.| * Evolutionary algorithm hyper-heuristics and design

& » Hyper-heuristics for evolutionary algorithm design
&, | * Discussion

Introduction

* Hyper-heuristics aim to provide a more generalized
solution.

— » Explore a heuristic space rather than a solution space.

» Heuristic space — low-level heuristics

» Constructive
* Perturbative

« Selection vs. Generation
* Role played by evolutionary algorithms

F VC DNGress on
,LF olutionary
(Somputatic

& An Overview of Hyper-Heuristics

Low-Level Heuristics

Low-Level Heuristics

| *Heuristics vs. low-level heuristics

= | * Construction heuristics — used to create a candidate
solution

 Perturbative heuristics — used to improve a solution
created randomly or using a construction heuristic

"VL.
\. olutionary
lé omputatic

Q Case Study: Examination Timetabling (ETP)

* This problem involves the allocation of examinations to a
set of specified timetable periods.

~| « Constraints
 Hard constraints
e Soft constraints

.| » Objective function
§_ Hard constraint cost must be zero
|« Minimize soft constraint cost

Low-Level Construction Heuristics for the ETP

- « Largest degree (l) - The examination with the most
clashes is scheduled first.

B _argest enrollment (e) - The examination with the largest
/ number of students is scheduled first.

e _argest weighted degree (w) - The examination with the

argest number of students involved in clashes is
scheduled first.

» Saturation degree (s) - The examination with the least

]Qurpber of feasible periods on the timetable is scheduled

| first.

Example of a Static Heuristic

N
2 ©

=2 10

E3 50
E4 20

Clash matrix;:

Static heuristics:

El 3
E2 1
E3 2
E4 2

50 20

10 <3

0 0 0 <«

0 0 30 «—

0 30 0 <«
Timetable:

P1 E1

P2
P3
P4

E3 E2
E4

QREress on

Svolutionary

Example of a Dynamic Heuristic

| L E1] B2 B3 | E4
50 20

EEfo 10

Clash matrix: 37 10 o 0 0

== 50 0 0 30
= 20 0 30 0

Static heuristics: Timetable:

= 4- < P1 El

£2 35— P2 E2 E3

E3 T—3—< P3 E4

E4 b5 ——— =

avolutionary

Aomputation

Low-Level Perturbative Heuristics for the ETP

» Swapping two randomly selected exams
| * Swapping subsets of exams

< « De-allocating exams

* Rescheduling exams

» Swapping timeslots of two randomly selected
<= | examinations

One-Dimensional Bin-Packing

* Define low-level construction heuristics for this
problem.

A | e Define low-level perturbative heuristics for this
4 problem.

« Can any of the heuristics used for the examination
timetabling problem above be used for this
e problem?

An Overview of Hyper-Heuristics

Classification of Hyper-Heuristics

Hyper-Heuristic Classification

* Hyper-heuristics select or create low-level heuristics.
* Low-level heuristics are constructive or perturbative.
~ « Classification:

» Selection constructive

» Selection perturbative

» Generation constructive
» Generation perturbative

&
« = | » Learning — offline vs. online

Selection Constructive

» Selects the constructive heuristic to use at each stage in
constructing a solution.

* A problem specific objective function and low-level construction
heuristics provide input to the hyper-heuristic.

=[P Applications: educational timetabling, production scheduling, bin
packing and cutting stock problems.

* Methods used by the hyper-heuristic: case-based reasoning, tabu
search, evolutionary algorithms, simulated annealing, variable

&, | neighbourhood search.
// FI & ngress on
,\. olutionary
Ié [Somputatio

Selection Perturbative

* Selection perturbative hyper-heuristics choose a low-level
perturbative heuristic at each stage in the improvement.

» Multi-point vs. single-point search
 Single-point

» Heuristic selection — random, choice function, roulette wheel,
reinforcement learning

* Move acceptance — deterministic vs. non-deterministic

 Multi-point search uses population based methods, e.g. genetic
algorithms, ant colonization.

» Applications: educational timetabling, sports scheduling, personal

scheduling and vehicle routing
-
FE

—— Generation Constructive

— * Create low-level constructive heuristics.
» | * Have previously been manually derived.
.~ | * Genetic programming has primarily been used for this.

| * More recently variations of genetic programming:
grammatical evolution and gene expression programming.

* Have produced good results for the domains of
educational timetabling and packing problems.

&
« 2 | « Disposable vs. reusable low-level heuristics.

—— Generation Perturbative

 Create low-level perturbative heuristics.

%.| * The heuristics are local search operators, algorithms and
metaheuristics.

| » Variations of genetic programming have been used to
evolve heuristics: grammar-based GP, linear GP and

| Cartesian GP.
&4 | ¢ Disposable vs. reusable low-level heuristics.
//// FVL
2 ,\.F Zvalutionary
b Somputatio

T Evolutionary Algorithm
v Hyper-Heuristics

Overview

* Evolutionary algorithms have been used for both
the selection and generation of low-level
construction and perturbative hyper-heuristics.

4 . Genetic algorithms have essentially been used for
selection and genetic programming for generation.

—— *Variations of genetic programming have proven to
= | be effective for generation hyper-heuristics.

@A | e

(S ‘jm
I@ ‘/‘ 1\@‘

Evolutionary Algorithm RHyper-
Heuristics

Selection Hyper-Heuristics

—— Selection Constructive Hyper-Heuristics

» Selection construction — find a combination of heuristics
that will produce a solution minimizing the objective
function.

| . The genetic algorithm explores the heuristic space.

« Each chromosome is composed of genes representing the
low-level heuristics.

¢ | * Each heuristic is used to select one or more entities

V":bf “j, i
% P
' % &orgress on
D ,\. : olutionary
Y [@omputatic

.| Case Study: Selection Constructive Hyper-
= | Heuristic for the ETP

— « Low-level construction heuristics

 Largest degree (l)

 Largest enrolliment (e)
 Largest weighted degree (w)
 Saturation degree (s)

« Chromosome representation and initial population generation
* Example: Iwwse

« Chromosome length — longer than the number of
examinations vs. shorter than number of examinations.

.| Case Study: Selection Constructive Hyper-
= | Heuristic for the ETP

— + Fitness calculation

« Each chromosome is used to create a timetable

* The fithess is a function of the hard and soft constraint
cost.

* Product of the hard constraints plus one and the soft
constraints

« Example: Iwwse to allocate the four examinations in the
previous example:

|- E1 w—E2 w—E3 s— E4

.| Case Study: Selection Constructive Hyper-
<= | Heuristic for the ETP

2 » Selection methods
* Tournamentselection
U * Fitness proportionate selection

» Genetic operators
« Mutation — Parent: ssde
Mutation point: 2
Offspring: swde
» Crossover— Parents: ssde Iwws
Crossoverpoint: 2
Offspring: ssws Iwde

7

D=
€ =
%,

s

2

| Examples

Approach Application Study

Messy GA One and two dimensional Lopez-Camacho et al.
bin-packing (2014)
Genetic algorithm Packing problems Pillay (2012),

Ross et al. (2002),
Ross et al. (2003),
Terashima-Marin (2010)

Genetic algorithm Educational timetabling Pillay (2010), Pillay(2011),
Pillay (2012), Pillay (2013)
Ross et al. (2014)

Genetic algorithms Cutting stock problems Terashima-Marin (2006)

Genetic algorithmc Dynamic variable Terashima-Marin (2008)
ordering problem

NEress on
Svolutionary
Somputation

.| Selection Perturbative Hyper-Heuristic
“w | fOr the ETP

* For a selection perturbative hyper-heuristic the low-level heuristics will
change the initial solution.

»| * An initial solution will be created by using a low-level construction
heuristic.

| « Example low-level heuristics:

« Swapping two randomly selected exams (e)

« Swapping subsets of exams (s)

» Deallocating exams (d)

» Rescheduling exams (a)

S « Swapping timeslots of two randomly selected examinations (t)

%\"'| « Example chromosome: tdsse
%

i

Examples

Approach Application Hyper-
Heuristic
Genetic algorithm Trainer Scheduling Selection Cowling et al. (2002)
perturbative
Genetic algorithm Distributed staff trainer Section Han and Kendall
scheduling perturbative (2003)

@A | e

(S ‘jm
I@ ‘/‘ 1\@‘

Evolutionary Algorithm RHyper-
Heuristics

Generation Hyper-Heuristics

Generation Constructive Hyper-Heuristics

» Genetic programming and variations of genetic programming,
> | e.g. grammar-based genetic programming and grammatical
*»| evolution have been used.

4| » Generation constructive heuristics combine:

A * variables representing the characteristics of the problem

* existing low-level construction heuristics to create new
heuristics.

= | * Applications: educational timetabling, packing problems and
« = | vehicle routing problems

ﬂr/ﬁm% B>
. [[

Case Study: One-Dimensional Bin-Packing

* Function set:
« Standard addition (+), subtraction (-) and multiplication (*).

* % - protected division which will return a 1 if the
denominator is zero.

< - will return a value of 1 if its first argument is less than or
equal to its second and -1 otherwise.

 Terminal set

* F - the fullness of a bin, i.e. the sum of the sizes of the
elements in the bin.

* C - the bin capacity
S - the size of the item to place next.

Case Study: One-Dimensional Bin-Packing

> Fithess

» Each heuristic in the population is evaluated by using it to solve
4 the problem instance.

* The fitness is calculated to be the difference of the number of
bins used and the ratio of the sum of the items to the sum of the
capacity of all bins used.

« Example heuristic %
RPAN

F VC DNGress on
,LF olutionary
(Somputatic

| Examples

Approach Application Study

Grammar-Based Examination timetabling Bader-El-Den et al. (2009)
genetic programming

Grammatical evolution Vehicle routing Drake et al. (2013)
Genetic algorithms One dimensional bin Ozcan et al. (2011)

packing
Single node genetic One dimensional bin Sim et al. (2013)
programming packing
Genetic programming Vehicle routing Sim et al. (2016)
Grammar-based Constraint satisfaction Sosa-Ascencio et al. (2015)

genetic programming problems

PREress on
Svolutionsry
I Ut atios

Examples

Approach Application Study

Genetic programming

Genetic programming

Grammatical evolution

Genetic programming

Genetic programming
and grammar-based
genetic programming

Packing problems

Multidimensional
knapsack problem

One dimensional
knapsack problem

Educational timetabling

Production scheduling

Burke et al. (2007), Burke et
al. (2010), Hyde (2010)

Drake et al. (2014)

Sotelo-Figueroa 2013)

Pillay (2009), Pillay(2011),
Pillay (2016), Pillay and
Banzhaf (2009)

Branke et al. (2016)

PREress on

avolutionary

o utatio

ﬂr/ﬁm% B>
. [[

Generation Perturbative Hyper-Heuristics

* Variations of genetic programming used
e grammar-based genetic programming
* linear genetic programming
» Cartesian genetic programming

* Used to evolve local search operators, algorithms and
metaheuristics.

« Components of existing perturbative heuristics are
decomposed and combined with conditional branching and/or
iterative constructs.

| Examples

Approach Application Study

Genetic programming 3-SAT problem Bader-El-Den et al. (2007)

Genetic programming SAT problem Fukanaga (2008)

Linear Genetic Travelling salesman Keller et al. (2003)

programming problem

Cartesian Travelling salesman Ryser-Welsh et al. (2015)

genetic programming problem Ryser-Welsh et al. (2016)

Genetic programming Travelling salesman Contreras-Bolton et al.
problem (2007)

Genetic programming Automatic clustering Contreras-Bolton et al.

problem (2007)

Evolutionary Algorithm RHyper-
& Heuristics

Challenges

—— Challenges

~_ | *High runtimes
| eDistributed architectures

* Distributed frameworks

1 « Parameter tuning
* Tuning tools, e.g iRace, ParamlILS
* Hyper-heuristics for design — using evolutionary

| algorithms with co-evolution
'C-rgms
Fd’k.

N ..\i]) /1\: A S A\/ .‘v () 1‘ X
"@i P@ﬂ‘kﬁﬂ L/‘L/’/J:L/ A< S [gy’ edﬂ*{f‘;&m{f D//[L/'rﬂ/ {[»
[o \/" v

EvoHyp: A Java Toolkit for
Evolutionary Algorithm RHyper-
Heuristics

Hae|
i1

1Y
Y = Hi

B> < S ;
NS
=

i« ;_
Qﬁ | .

ST
f(\,\’/ gl 1
v I

Overview

* EvoHyp is a Java evolutionary algorithm hyper-heuristic toolkit
* Allows the researcher to focus on the problem domain

» Packages provided by EvoHyp:
* GenAlg
» GenProg
 DistrGenAlg

 DistrGenProg

| « Website: http://titancs.ukzn.ac.za/EvoHyp.aspx

] (Qorgress on
,\. olutionary
[Somputatio

| GenAlg

» Implements a generational genetic algorithm.
“ | » The genes of each chromosome are low-level heuristics

| « The user has to implement the problem domain including a method to
Iy| use the chromosome to construct or improve a solution.

 Fitness is a function of the objective value of the resulting solution.
» Tournament selection is used to choose parents.

.| = Mutation and crossover create offspring.

e « Can be used to implement a selection constructive or selection

- = | perturbative hyper-heuristic.
m Iu(iomry

ﬂr/ﬁm% B>
. [[

GenProg

* |s a library for the implementation of a generation constructive
hyper-heuristic.

»| * Implements a generational genetic programming algorithm.

* User must implement the problem domain includin? a method
thaL iJSGS an evolved heuristic to create a solution to the
problem.

* The fitness is a function of the objective value of the resulting
solution.

* Tournament selection is used to choose parents.

-| « Mutation and crossover create offspring.

DistrGenAlg and DistrGenProg

1 « Are distributed versions of GenAlg and GenProg aiming to

. | reduce the runtimes of the hyper-heuristics.
~ « Uses a multicore architecture.

J2| » The user has to specify the number of cores available for

use.

* The creation and evaluation of the initial population is
distributed over the number of cores.

* The creation and evaluation of offspring are distributed

over the cores.

%,
b Evolutionary Algorithm
v Hyper-Heuristics for Design
%
2)

ﬂr/ﬁm% B>
. [[

Overview

 Selection and generative evolutionary algorithm hyper-
heuristics have been used for design.

»| » Evolutionary algorithms used: %enetic algorithms, genetic
0

programming, grammatical evolution.

» Design aspects
» Selecting parameter values
 Selecting operators/methods and deciding control flow
 Hybridization of methods

* Low-level heuristics are the parameter values, operators and
methods.

Examples

Approach Design Aspect Study

Grammar based GP Decision tree generation and Barros et al. (2012)
design

Evolutionary algorithms Decision tree generation Barros et al. (2013),

Barros et al. (2014)

NSGA-II Combine neural networks into a Furtuna et al. (2012)
stacked neural network.

Grammatical evolution Selects operators and parameter
values to solve a vehicle routing Marshall et al. 2014)
problem

Genetic programming Generates black box search Martin and Tauritz (2014)

algorithms to solve the deceptive
trap problem.

PREress on
volutionary
DI Ut ati o

Examples

Approach Design Aspect

Grammatical evolution Selects operators and parameter values Tavares and
for ant colonization to solve the travelling Pereira (2012)
salesman problem.

Genetic programming Generates mutation operators for Honget al. (2013)
evolutionary programming

Grammatical evolution Selects operators and parameter values Lourenco et al.
for an evolutionary algorithm to solve the (2013)
knapsack problem.

Genetic algorithm Designs a genetic programming Nyathi et al. (2016)

algorithmto produce data classifiers
PREress on
vwolutionary
Aomputation

%,

b Hyper-Heuristics for Evolutionary
v Algorithm Design

%
23

—— Overview

* Hyper-heuristics have also proven to be effective for the
design of evolutionary algorithms.
1+ Has been used to:

 decide on the control flow in an evolutionary algorithm
by choosing when during the evolution process to use
which operators

* select of parameter values

| <hybridize evolutionary algorithms

"VL.
\. olutionary
lé omputatic

Examples

Design Aspect Study

Selection of recombination operator and selection
method in differential evolution.

Selects one of three multi-objective evolutionary
algorithms to solve at each point of solving the
problem

Parameter tuning and determining the stopping
condition in and implementation of MOEA.

Selection of crossover operator, mutation operator

and selection method in an evolutionary algorithm.

Generation of mutation operators in a genetic
algorithm

Tinoco et al. (2012)

Maashi et al. (2014)

Segredo et al. (2014)

Kumari et al.(2012), Kumari et.
al(2013)

Woodward et al.(2012).
Woodward et al. (2016)

R Discussion Session: Future
) Research Directions

