Next Generation Genetic Algorithms

Next Generation Genetic Algorithms

Darrell Whitley
Computer Science, Colorado State University

With Thanks to: Francisco Chicano, Gabriela Ochoa, Andrew Sutton and Renato Tinós

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
What do we mean by "Next Generation?"
(1) NOT a Black Box Optimizer.
(2) Uses mathematics to characterize problem structure.
(3) NOT cookie cutter

Not a blind "population, selection, mutation, crossover" GA.
(4) Uses deterministic move operators and crossover operators
(5) Tunnels between Local Optima
(6) Scales to large problems with millions of variables.
(7) Build on our expertise in smart ways

Know your Landscape! And Go Downhill!

What if you could ...

"Tunnel" between local optima on a TSP, or on an NK Landscape or a MAXSAT problem and go the BEST reachable local optima!

Tunneling $=$ jump from local optimum to local optimum

The Partition Crossover Theorem for TSP

Let G be a graph produced by unioning 2 Hamiltonian Circuits.
Let G' be a reduced graph so that all common subtours are replaced by a single surrogate common edge.
If there is a partition of G^{\prime} with cost 2 , then the 2 Hamiltonian Circuits that make up G can be cut and recombined at this partition to create two new offspring.
The resulting Partition Crossover is Respectful and Transmits alleles.

The Partition Crossover for TSP

As a side effect: $f(P 1)+f(P 2)=f(C 1)+f(C 2)$

Partition Crossover

The Big Valley Hypothesis
is sometimes used to explain metaheuristic search

Tunneling Between Local Optima

Generalized Partition Crossover

Generalize Partition Crossover is always feasible if the partitions have 2 exits (same color in and out). If a partition has more than 2 exits, the "colors" must match.

How Many Partitions are Discovered?

Instance	att532	nrw1379	rand1500	u1817
3-opt	10.5 ± 0.5	11.3 ± 0.5	24.9 ± 0.2	26.2 ± 0.7

Table: Average number of partition components used by GPX in 50 recombinations of random local optima found by 3-opt.

With 25 components, 2^{25} represents millions of local optima.

Lin-Kernighan-Helsgaun-LKH

LKH is widely considered the best Local Search algorithm for TSP.
LKH uses deep k-opt moves, clever data structures and a fast implementation.

LKH-2 has found the majority of best known solutions on the TSP benchmarks at the Georgia Tech TSP repository that were not solved by complete solvers: http://www.tsp.gatech.edu/data/index.html.

GPX Across Runs and Restarts

A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per run. The circles represent local optima produced by LKH-2. GPX across runs crosses over solutions with the same letters. GPX across restarts crosses over solutions with the same numbers.

With Thanks to Gabriela Ochoa and Renato Tinós

GPX, Complex Cuts

(a)

LKH with Partition Crossover

Mulit-Start LKH compared to LKH + PX on 31 K City Dimacs Cluster Instance

The Two Best TSP (solo) Heuristics

Lin Kernighan Helsgaun (LKH 2 with Multi-Starts)
Iterated Local Search

EAX: Edge Assembly Crossover (Nagata et al.)
Genetic Algorithm

Combinations of LKH and EAX
using Automated Algorithm Selection Methods (Hoos et al.)
(1) EAX is used to generate many (e.g. 30) offspring during every recombination. Only the best offspring is retained (Brood Selection).
(2) There is no selection, just "Brood Selection."
(3) Typical population size: 300
(4) The order of the population is randomized every generation. Parent i is recombined with Parent $i+1$ and the offspring replaces Parent i. (The population is replace every generation.)
(1) EAX can inherit many edges from parents, but also introduces new high quality edges.
(2) EAX disassembles and reassembles, and focuses on finding improvements.
(3) This gives EAX a "thoroughness" of exploration.
(4) EAX illustrates the classic trade-off between exploration and exploitation

Combining EAX and Partition Crossover

(1) Partition Crossover can dramatically speed-up exploitation, but it also impact long term search potential.
(2) A Strategy: When PAX generates 30 offspring, recombine all of the offspring using Partition Crossover. This can help when EAX gets stuck and cannot find an improvement.

EAX and EAX with Partition Crossover

Standard EAX						
Dataset	Pop Size	Evaluation Mean	S. D.	Running Time Mean	S. D.	Number Opt. Sol.
rl5934	200	556090.8	50	1433	34	12/30
rl5915	200	565537.57	29	1221	30	23/30
r111849	200	923297.7	8	8400	130	1/10
ja9847	800	491930.1	2	37906	618	0/10
pla7397	800	23261065.6	552	12627	344	2/10
usa13509	800	19983194.5	411	81689	1355	0/10
EAX with Partition Crossover						
	Pop	Evaluation		Running		Number
Dataset	Size	Mean	S. D.	Time Mean	S. D.	Opt. Sol.
rl5934	200	556058.63	33	1562	248	21/30
rl5915	200	565537.77	21	1022	73	19/30
r111849	200	923294.8	8	7484	105	4/10
ja9847	800	491926.33	2	30881	263	4/10
pla7397	800	23260855	222	11647	1235	4/10
usa13509	800	19982987.6	173	66849	818	2/10

k-bounded Pseudo-Boolean Functions

By Constructive Proof: Every problem with a bit representation and a closed form evaluation function can be expressed as a quadratic ($k=2$) pseudo-Boolean Optimization problem. (See Boros and Hammer)

$$
\begin{aligned}
& x y=z \quad \text { iff } \quad x y-2 x z-2 y z+3 z=0 \\
& x y \neq z \quad \text { iff } \quad x y-2 x z-2 y z+3 z>0
\end{aligned}
$$

Or we can reduce to $\mathrm{k}=3$ instead:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)
$$

becomes (depending on the nonlinearity):

$$
f 1\left(z_{1}, z_{2}, z_{3}\right)+f 2\left(z_{1}, x_{1}, x_{2}\right)+f 3\left(z_{2}, x_{3}, x_{4}\right)+f 4\left(z_{3}, x_{5}, x_{6}\right)
$$

Walsh Example: MAXSAT

Given a logical expression consisting of Boolean variables, determine whether or not there is a setting for the variables that makes the expression TRUE.

Literal: a variable or the negation of a variable
Clause: a disjunct of literals

$$
\begin{gathered}
\text { A 3SAT Example } \\
\left(\neg x_{2} \vee x_{1} \vee x_{0}\right) \wedge\left(x_{3} \vee \neg x_{2} \vee x_{1}\right) \wedge\left(x_{3} \vee \neg x_{1} \vee \neg x_{0}\right) \\
\text { recast as a MAX3SAT Example } \\
\left(\neg x_{2} \vee x_{1} \vee x_{0}\right)+\left(x_{3} \vee \neg x_{2} \vee x_{1}\right)+\left(x_{3} \vee \neg x_{1} \vee \neg x_{0}\right)
\end{gathered}
$$

BLACK BOX OPTIMIZATION

Don't wear a blind fold during search if you can help it!

GRAY BOX OPTIMIZATION

We can construct "Gray Box" optimization for pseudo-Boolean optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

$$
f(x)=\sum_{i=1}^{m} f_{i}(x)
$$

Which can be expressed as a Walsh Polynomial

$$
W(f(x))=\sum_{i=1}^{m} W\left(f_{i}(x)\right)
$$

Or can be expressed as a sum of k Elementary Landscapes

$$
f(x)=\sum_{i=1}^{k} \varphi^{(k)}(W(f(x)))
$$

Consider the example function consisting of a single clause $f(x)=\neg x_{2} \vee x_{1} \vee x_{0}$

```
f(000)=1 (\neg\mp@subsup{x}{2}{}T)
f(001) = 1 (\neg\mp@subsup{x}{2}{}T)
f(010) = 1 (\neg\mp@subsup{x}{2}{}T)
f(011) = 1 (\neg\mp@subsup{x}{2}{}T)
f(100) = 0 (\neg\mp@subsup{x}{2}{}F\wedge\mp@subsup{x}{1}{}F\wedge\mp@subsup{x}{0}{}F)
f(101) = 1 (x0T)
f(110) = 1 (x,T)
f(111) = 1 (x,T)
```


Walsh Example: MAX-3SAT

Let neg (f) return a K-bit string with 1 bits indicating which variables in the clause are negated.

$$
\begin{gathered}
f(100)=0 \quad\left(\neg x_{2} F \wedge x_{1} F \wedge x_{0} F\right) \\
\operatorname{neg}(f)=100
\end{gathered}
$$

Then the Walsh coefficients for f are:

$$
w_{j}= \begin{cases}\frac{2^{K}-1}{2^{K}} & \text { if } j=0 \\ -\frac{1}{2^{K}} \psi_{j}(\operatorname{neg}(f)) & \text { if } j \neq 0\end{cases}
$$

$$
\begin{aligned}
& f_{1}=\left(\neg x_{2} \vee x_{1} \vee x_{0}\right) \\
& f_{2}=\left(x_{3} \vee \neg x_{2} \vee x_{1}\right) \\
& f_{3}=\left(x_{3} \vee \neg x_{1} \vee \neg x_{0}\right)
\end{aligned}
$$

x	w_{i}	$W\left(f_{1}\right)$	$W\left(f_{2}\right)$	$W\left(f_{3}\right)$	$W(f(x))$
0000	w_{0}	0.875	0.875	0.875	2.625
0001	w_{1}	-0.125	0	0.125	0
0010	w_{2}	-0.125	-0.125	0.125	-0.125
0011	w_{3}	-0.125	0	-0.125	-0.250
0100	w_{4}	0.125	0.125	0	0.250
0101	w_{5}	0.125	0	0	0.125
0110	w_{6}	0.125	0.125	0	0.250
0111	w_{7}	0.125	0	0	0.125
1000	w_{8}	0	-0.125	-0.125	-0.250
1001	w_{9}	0	0	0.125	0.125
1001	w_{10}	0	-0.125	0.125	0
1011	w_{11}	0	0	-0.125	-0.125
1100	w_{12}	0	0.125	0	0.125
1101	w_{13}	0	0	0	0
1110	w_{14}	0	0.125	0	0.125
1111	w_{15}	0	0	0	0

GRAY BOX OPTIMIZATION

We can construct "Gray Box" optimization for pseudo-Boolean optimization problems (M subfunctions, k variables per subfunction)

Exploit the general properties of every Mk Landscape:

$$
f(x)=\sum_{i=1}^{m} f_{i}(x)
$$

Which can be expressed as a Walsh Polynomial

$$
W(f(x))=\sum_{i=1}^{m} W\left(f_{i}(x)\right)
$$

Or can be expressed as a sum of k Elementary Landscapes

$$
f(x)=\sum_{i=1}^{k} \varphi^{(k)}(W(f(x)))
$$

Constant Time Steepest Descent

Assume we flip bit p to move from x to $y_{p} \in N(x)$. Construct a vector Score such that

$$
\operatorname{Score}\left(x, y_{p}\right)=-2\left\{\sum_{\forall b, p \subset b}-1^{b^{T} x} w_{b}(x)\right\}
$$

All Walsh coefficients whose signs will be changed by flipping bit p are collected into a single number $\operatorname{Score}\left(x, y_{p}\right)$.

In almost all cases, Score does not change after a bit flip. Only some Walsh coefficient are affected.

Constant Time Steepest Descent

Assume we flip bit p to move from x to $y_{p} \in N(x)$. Construct a vector Score such that

$$
\operatorname{Score}\left(x, y_{p}\right)=f\left(y_{p}\right)-f(x)
$$

Thus, are the scores reflect the increase or decrease relative to $f(x)$ associated with flipping bit p.

In almost all cases, Score does not change after a bit flip. Only some subfunctions are affected.

When 1 bit flips what happens?

The improving moves can be identified in $O(1)$ time! Mutation is not needed, except to diversify the search.

The locations of the updates are obvious

$$
\begin{aligned}
& \operatorname{Score}\left(y_{p}, y_{1}\right)=\operatorname{Score}\left(x, y_{1}\right) \\
& \operatorname{Score}\left(y_{p}, y_{2}\right)=\operatorname{Score}\left(x, y_{2}\right) \\
& \operatorname{Score}\left(y_{p}, y_{3}\right)=\operatorname{Score}\left(x, y_{3}\right)-2\left(\sum_{\forall b,(p \wedge 3) \subset b} w_{b}^{\prime}(x)\right) \\
& \operatorname{Score}\left(y_{p}, y_{4}\right)=\operatorname{Score}\left(x, y_{4}\right) \\
& \operatorname{Score}\left(y_{p}, y_{5}\right)=\operatorname{Score}\left(x, y_{5}\right) \\
& \operatorname{Score}\left(y_{p}, y_{6}\right)=\operatorname{Score}\left(x, y_{6}\right) \\
& \operatorname{Score}\left(y_{p}, y_{7}\right)=\operatorname{Score}\left(x, y_{7}\right) \\
& \operatorname{Score}\left(y_{p}, y_{8}\right)=\operatorname{Score}\left(x, y_{8}\right)-2\left(\sum_{\forall b,(p \wedge 8) \subset b} w_{b}^{\prime}(x)\right) \\
& \operatorname{Score}\left(y_{p}, y_{9}\right)=\operatorname{Score}\left(x, y_{9}\right)
\end{aligned}
$$

Some Theoretical Results: k-bounded Boolean

1) No difference in runtime for BEST First and NEXT First search.
2) Constant time improving move selection under all conditions.
3) Constant time improving moves in space of statistical moments.
4) Auto-correlation computed in closed form
5) Tunneling between local optima.

Best Improving and Next Improving moves

"Best Improving" and "Next Improving" moves cost the same.
GSAT uses a Buffer of best improving moves

$$
\text { Buffer }(\text { best.improvement })=<M_{10}, M_{1919}, M_{9999}>
$$

But the Buffer does not empty monotonically: this leads to thrashing

Instead uses multiple Buckets to hold improving moves

Bucket(best.improvement) $=<M_{10}, M_{1919}, M_{9999}>$
Bucket(best.improvement -1$)=<M_{8371}, M_{4321}, M_{847}>$
Bucket(all.other.improving.moves) $=<M_{40}, M_{519}, M_{6799}>$
This improves the runtime of GSAT by a factor of 20X to 30X.
The solution for NK Landscapes is only slightly more complicated.

Steepest Descent on Moments

Both $f(x)$ and $\operatorname{Avg}(N(x))$ can be computed with Walsh Spans.

$$
\begin{gathered}
f(x)=\sum_{z=0}^{3} \varphi^{(z)}(x) \\
\operatorname{Avg}(N(x))=f(x)-1 / d \sum_{z=0}^{3} 2 z \varphi^{(p)}(x) \\
\operatorname{Avg}(N(x))=\sum_{z=0}^{3} \varphi^{(z)}(x)-2 / N \sum_{z=0}^{3} z \varphi^{(z)}(x)
\end{gathered}
$$

The Variable Interaction Graph

There is a vertex for each variable in the Variable Interaction Graph (VIG). There must be fewer than $2^{k} M=O(N)$ Walsh coefficients. There is a connection in the VIG between vertex v_{i} and v_{j} if there is a non-zero Walsh coefficient indexed by i and j, e.g., $w_{i, j}$.

What if you want to flip 2 or 3 bits at a time?
What if you want to flip 2 or 3 bits at a time?

Assume all distance 1 moves are taken.
There can never be an improving move flipping bits 2 and 7 .
There can never be an improving move flipping bits 4, 6 and 9 .
There can never be an improving move over combinations of bits where there are no (non-zero) Walsh coefficients.

12,000 bit k-bounded functions

Decomposed Evaluation for MAXSAT

When recombining the solutions $S_{P 1}=000000000000000000$ and $S_{P 2}=111100011101110110$, the vertices and edges associated with shared variables $4,5,6,10,14$ are deleted to yield the recombination graph.

Tunneling Crossover Theorem:

If the recombination graph of f contains q connected components, then Partition Crossover returns the best of 2^{q} solutions.

MAXSAT Number of recombining components

Instance	N	Min	Median	Max
aaai10ipc5	308,480	7	20	38
AProVE0906	37,726	11	1373	1620
atcoenc3opt19353	991,419	937	1020	1090
LABSno88goal008	182,015	231	371	2084
SATinstanceN111	72,001	34	55	1218

Tunneling "scans" 2^{1000} local optima and returns the best in $\mathrm{O}(\mathrm{n})$ time

Decomposed Evaluation

(1)<

A new evaluation function can be constructed:
$g(x)=c+g_{1}\left(x_{0}, x_{1}, x_{2}\right)+g_{2}\left(x_{9}, x_{11}, x_{16}\right)+g_{2}\left(x_{3}, x_{7}, x_{8}, x_{12}, x_{13}, x_{15}\right)$
where $g(x)$ evaluates any solution (parents or offspring) that resides in the subspace ${ }^{* * * *} 000^{* * *} 0^{* * *} 0^{* *}$.

In general:

$$
g(x)=c+\sum_{i=1}^{q} g_{i}\left(x, \text { mask }_{i}\right)
$$

Percent of Offspring that are Local Optima

Using a Very Simple (Stupid) Hybrid GA:

N	k	Model	2-point Xover	Uniform Xover	PX
100	2	Adj	74.2 ± 3.9	0.3 ± 0.3	100.0 ± 0.0
300	4	Adj	30.7 ± 2.8	0.0 ± 0.0	94.4 ± 4.3
500	2	Adj	78.0 ± 2.3	0.0 ± 0.0	97.9 ± 5.0
500	4	Adj	31.0 ± 2.5	0.0 ± 0.0	93.8 ± 4.0
100	2	Rand	0.8 ± 0.9	0.5 ± 0.5	100.0 ± 0.0
300	4	Rand	0.0 ± 0.0	0.0 ± 0.0	86.4 ± 17.1
500	2	Rand	0.0 ± 0.0	0.0 ± 0.0	98.3 ± 4.9
500	4	Rand	0.0 ± 0.0	0.0 ± 0.0	83.6 ± 16.8

Number of partition components discovered

N	k	Model	Paired PX	
			Mean	Max
100	2	Adjacent	3.34 ± 0.16	16
300	4	Adjacent	5.24 ± 0.10	26
500	2	Adjacent	7.66 ± 0.47	55
500	4	Adjacent	7.52 ± 0.16	41
100	2	Random	3.22 ± 0.16	15
300	4	Random	2.41 ± 0.04	13
500	2	Random	6.98 ± 0.47	47
500	4	Random	2.46 ± 0.05	13

Paired PX uses Tournament Selection. The first parent is selected by fitness. The second parent is selected by Hamming Distance.

Optimal Solutions for Adjacent NK

		2-point	Uniform	Paired PX
N	k	Found	Found	Found
300	2	18	0	100
300	3	0	0	100
300	4	0	0	98
500	2	0	0	100
500	3	0	0	98
500	4	0	0	70

Percentage over 50 runs where the global optimum was Found in the experiments of the hybrid GA with the Adjacent NK Landscape.

NK and Mk Landscapes, P and NP

atco_enc3_opt1_13_48
Air traffic controller shift scheduling problem: 1087 components.
PX returns the best of 2^{1087} offsprings.

Decomposed Evaluation for MAXSAT

LABS_n088_goal008
Finding low autocorrelation binary sequence: 371 components PX returns the best of 2^{371} offsprings.

MAXSAT Number of recombining components

Instance	N	Min	Median	Max
aaai10ipc5	308,480	7	20	38
AProVE0906	37,726	11	1373	1620
atcoenc3opt19353	991,419	937	1020	1090
LABSno88goal008	182,015	231	371	2084
SATinstanceN111	72,001	34	55	1218

Imagine:
crossover "scans" 2^{1000} local optima and returns the best in $\mathrm{O}(\mathrm{n})$ time
Deterministic Recombination Iterated Local Search (DRILS)
This exploits contant time deterministic improving moves selection and deterministic partition crossover.

Early MAXSAT Results

Early MAXSAT Results

One Million Variable NK Landscapes

This configuration is best for Adjacent NK Landscapes with low K value.
We can now solve 1 million variable NK-Landscapes to optimality in approximately linear time. This exploits contant time deterministic improving moves selection and deterministic partition crossover.

One Million Variable NK Landscapes

Scaling for runtime, Adjacent NK Landscapes with $\mathrm{K}=2(\mathrm{k}=3)$.

Cast Scheduling: K. Deb and C. Myburgh.

A foundry casts objects of various sizes and numbers by melting metal on a crucible of capacity W. Each melt is called a heat.

Assume there N total objects to be cast, with r_{j} copies of the $j^{t h}$ object. Each object has a fixed weight w_{i}, thereby requiring $M=\sum_{j=1}^{N} r_{j} w_{j}$ units of metal.

DEMAND: Number of copies of the $j^{\text {th }}$ object.
CAPACITY of the crucible, W.

Cast Scheduling: Deterministic Recombination

Recombination is illustrated for a small problem with $N=10, H=4$, with capacity $W=650$. Demand $\left(r_{j}\right)$ is shown in the final row.

Cast Scheduling: Deterministic Recombination

Parent 2 has a better metal utilization for rows 1,2 and 4 . Row 3 is taken from Parent 1. Recombination is greedy.

Columns indicate objects and rows indicate heats. The last column prints $\sum_{j=1}^{N} w_{j} x_{i j}$ for each heat. Offspring are constructed using the best rows.

Cast Scheduling: Deterministic Recombination

Repair operators are applied to offspring solution.
Repair 1: The respective variables are increased (green) or decreased (blue) to meet Demand.

Cast Scheduling: Deterministic Recombination

Weight	Repair 2:										Metal
	154	136	57	55	67	83	187	20	123	50	Used
	1	0	1	2	1	0	0	2	0	3	578
	1	0	0	0	1	1	1	1	1	0	634
	1	1	0	0	2	1	0	0	1	0	630
	0	1	1	0	0	1	1	0	1	1	636
Demand	3	2	2	2	4	3	2	3	3	4	0.953
									Fitnes		0.953

Repair operators are applied to offspring solution.

Repair 2: Objects are moved to different heats within the individual columns to reduce or minimize infeasibility

One Billion Variables

Breaking the Billion-Variable Barrier in Real World Optimization Using a Customized Genetic Algorithm. K. Deb and C. Myburgh. GECCO 2016.

What's (Obviously) Next?

TO DO LIST:

1. WAIT FOR TONIGET
2. Wait for take over
3. TRY TO TARE WORD!

- Put an End to the domination of Black Box Optimization.
- Wait for Tonight and Try to Take over the World.

