
1

Next Generation Genetic Algorithms

Darrell Whitley

Computer Science, Colorado State University

With Thanks to: Francisco Chicano, Gabriela Ochoa, Andrew Sutton

and Renato Tinós

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

2

Next Generation Genetic Algorithms

What do we mean by “Next Generation?”

1
NOT a Black Box Optimizer.

2
Uses mathematics to characterize problem structure.

3
NOT cookie cutter.

Not a blind “population, selection, mutation, crossover” GA.

4
Uses deterministic move operators and crossover operators

5
Tunnels between Local Optima.

6
Scales to large problems with millions of variables.

7
Build on our expertise in smart ways.

3

Know your Landscape! And Go Downhill!

4

What if you could ...

P1
P2

recombine P1 and P2

“Tunnel” between local optima on a TSP,

or on an NK Landscape or a MAXSAT problem

and go the BEST reachable local optima!

Tunneling = jump from local optimum to local optimum

5

The Partition Crossover Theorem for TSP

Let G be a graph produced by unioning 2 Hamiltonian Circuits.

Let G’ be a reduced graph so that all common subtours are replaced by a

single surrogate common edge.

If there is a partition of G’ with cost 2, then the 2 Hamiltonian Circuits

that make up G can be cut and recombined at this partition to create

two new o↵spring.

The resulting Partition Crossover is Respectful and Transmits alleles.

6

The Partition Crossover for TSP

As a side e↵ect: f(P1) + f(P2) = f(C1) + f(C2)

7

Partition Crossover

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

8

Partition Crossover

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

9

Partition Crossover in O(N) time

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

10

The Big Valley Hypothesis

is sometimes used to explain metaheuristic search

11

Tunneling Between Local Optima

Local Optima are “Linked” by Partition Crossover

12

Generalized Partition Crossover

Generalize Partition Crossover is always feasible if the partitions have 2

exits (same color in and out). If a partition has more than 2 exits, the

“colors” must match.

13

How Many Partitions are Discovered?

Instance att532 nrw1379 rand1500 u1817

3-opt 10.5± 0.5 11.3± 0.5 24.9± 0.2 26.2± 0.7

Table: Average number of partition components used by GPX in 50

recombinations of random local optima found by 3-opt.

With 25 components, 225 represents millions of local optima.

14

Lin-Kernighan-Helsgaun-LKH

LKH is widely considered the best Local Search algorithm for TSP.

LKH uses deep k-opt moves, clever data structures and a fast

implementation.

LKH-2 has found the majority of best known solutions on the TSP

benchmarks at the Georgia Tech TSP repository that were not solved by

complete solvers: http://www.tsp.gatech.edu/data/index.html.

15

GPX Across Runs and Restarts

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

B1 B2 B3 B4 B5 B6 B7 B8 B9B0

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

D0 D1 D2 D3 D4 D5 D6 D7 D8

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

D9

GPX Across Runs

G
P

X
 A

c
ro

s
s
 R

e
s
ta

rt
s

A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per

run. The circles represent local optima produced by LKH-2. GPX across

runs crosses over solutions with the same letters. GPX across restarts

crosses over solutions with the same numbers.

16

With Thanks to Gabriela Ochoa and Renato Tinós

17

GPX, Cuts Crossing 4 Edges (IPT fails here)

2

1

8

6

7

4
3

5

910

18

GPX, Complex Cuts

a

b

c

d

e

f

g
h

i

j

k
l

m

n

o

p

q

r

s

t

u

v
w

x

y

z

19

GPX, Complex Cuts

(a) (b)

(c)

A B

C D

E F

(d)

20

LKH with Partition Crossover

21

The Two Best TSP (solo) Heuristics

Lin Kernighan Helsgaun (LKH 2 with Multi-Starts)

Iterated Local Search

EAX: Edge Assembly Crossover (Nagata et al.)

Genetic Algorithm

Combinations of LKH and EAX

using Automated Algorithm Selection Methods (Hoos et al.)

22

Edge Assembly Crossover

Parent 1 Parent 2 Union of Parents

AB Cycles (the E−Set) The Subcircuits Offspring: New Edges

AB-Cycles are extracted from the graph which is the Union of the

Parents. The AB-Cycles are used to cut Parent 1 into subcircuits.

23

Edge Assembly Crossover

AB Cycles (the E−Set) The Subcircuits Offspring: New Edges

The AB-Cycles are used to cut Parent 1 into subcircuits. These

subcircuits are reconnected in a greedy fashion to create an o↵spring.

The o↵spring is composed of edges from Parent 1, edges from Parent 2,

and completely new edges not found in either parent.

24

The EAX Genetic Algorithm Details

1
EAX is used to generate many (e.g. 30) o↵spring

during every recombination. Only the best o↵spring is retained

(Brood Selection).

2
There is no selection, just ”Brood Selection.”

3
Typical population size: 300.

4
The order of the population is randomized every generation. Parent

i is recombined with Parent i+ 1 and the o↵spring replaces Parent

i. (The population is replace every generation.)

25

The EAX Strategy

1
EAX can inherit many edges from parents,

but also introduces new high quality edges.

2
EAX disassembles and reassembles,

and focuses on finding improvements.

3
This gives EAX a “thoroughness” of exploration.

4
EAX illustrates the classic trade-o↵ between

exploration and exploitation

26

Edge Assembly Crossover: Typical Behavior

9600$

9800$

10000$

10200$

10400$

10600$

10800$

11000$

11200$

11400$

0$ 2000$ 4000$ 6000$ 8000$ 10000$ 12000$ 14000$

Evalua&on)

Run)Time)

Popsize200

Popsize500

Popsize1000

27

Combining EAX and Partition Crossover

1
Partition Crossover can dramatically speed-up exploitation, but it

also impact long term search potential.

2
A Strategy: When PAX generates 30 o↵spring, recombine all of the

o↵spring using Partition Crossover. This can help when EAX gets

stuck and cannot find an improvement.

28

EAX and EAX with Partition Crossover

Standard EAX
Pop Evaluation Running Number

Dataset Size Mean S. D. Time Mean S. D. Opt. Sol.
rl5934 200 556090.8 50 1433 34 12/30
rl5915 200 565537.57 29 1221 30 23/30
rl11849 200 923297.7 8 8400 130 1/10
ja9847 800 491930.1 2 37906 618 0/10
pla7397 800 23261065.6 552 12627 344 2/10
usa13509 800 19983194.5 411 81689 1355 0/10

EAX with Partition Crossover
Pop Evaluation Running Number

Dataset Size Mean S. D. Time Mean S. D. Opt. Sol.
rl5934 200 556058.63 33 1562 248 21/30
rl5915 200 565537.77 21 1022 73 19/30
rl11849 200 923294.8 8 7484 105 4/10
ja9847 800 491926.33 2 30881 263 4/10
pla7397 800 23260855 222 11647 1235 4/10
usa13509 800 19982987.6 173 66849 818 2/10

29

k-bounded Pseudo-Boolean Functions

1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1

f1 f2 f3 f f4 m

f
i = 1

i (x, mask)f(x) =

m

30

A General Result over Bit Representations

By Constructive Proof: Every problem with a bit representation and a

closed form evaluation function can be expressed as a quadratic (k=2)

pseudo-Boolean Optimization problem. (See Boros and Hammer)

xy = z iff xy � 2xz � 2yz + 3z = 0

xy 6= z iff xy � 2xz � 2yz + 3z > 0

Or we can reduce to k=3 instead:

f(x1, x2, x3, x4, x5, x6)

becomes (depending on the nonlinearity):

f1(z1, z2, z3) + f2(z1, x1, x2) + f3(z2, x3, x4) + f4(z3, x5, x6)

31

k-bounded Pseudo-Boolean functions

For example: A Random NK Landscape: n = 10 and k = 3.
The subfunctions:

f0(x0, x1, x6) f1(x1, x4, x8) f2(x2, x3, x5) f3(x3, x2, x6)
f4(x4, x2, x1) f5(x5, x7, x4) f6(x6, x8, x1) f7(x7, x3, x5)

f8(x8, x7, x3) f9(x9, x7, x8)

But this could also be a MAXSAT Function,

or an arbitrary Spin Glass problem.

32

Walsh Example: MAXSAT

33

BLACK BOX OPTIMIZATION

Don’t wear a blind fold during search if you can help it!

34

GRAY BOX OPTIMIZATION

We can construct “Gray Box” optimization for pseudo-Boolean

optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

f(x) =
mX

i=1

f
i

(x)

Which can be expressed as a Walsh Polynomial

W (f(x)) =
mX

i=1

W (f
i

(x))

Or can be expressed as a sum of k Elementary Landscapes

f(x) =
kX

i=1

'(k)(W (f(x)))

35

Walsh Example: MAX-3SAT

36

Walsh Example: MAX-3SAT

37

Walsh Example: MAX-3SAT

38

Walsh Example

39

GRAY BOX OPTIMIZATION

We can construct “Gray Box” optimization for pseudo-Boolean

optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

f(x) =
mX

i=1

f
i

(x)

Which can be expressed as a Walsh Polynomial

W (f(x)) =
mX

i=1

W (f
i

(x))

Or can be expressed as a sum of k Elementary Landscapes

f(x) =
kX

i=1

'(k)(W (f(x)))

40

The Eigenvectors of MAX-3SAT

f(x) = f1(x) + f2(x) + f3(x) + f4(x)

f1(x) = f1
a

(x) + f1
b

(x) + f1
c

(x)

f2(x) = f2
a

(x) + f2
b

(x) + f2
c

(x)

f3(x) = f3
a

(x) + f3
b

(x) + f3
c

(x)

f4(x) = f4
a

(x) + f4
b

(x) + f4
c

(x)

'(1)(x) = f1
a

(x) + f2
a

(x) + f3
a

(x) + f4
a

(x)

'(2)(x) = f1
b

(x) + f2
b

(x) + f3
b

(x) + f4
b

(x)

'(3)(x) = f1
c

(x) + f2
c

(x) + f3
c

(x) + f4
c

(x)

f(x) = '(1)(x) + '(2)(x) + '(3)(x)

41

Constant Time Steepest Descent

Assume we flip bit p to move from x to y
p

2 N(x). Construct a vector

Score such that

Score(x, y
p

) = �2

8
<

:
X

8b, p⇢b

�1b
T
xw

b

(x)

9
=

;

All Walsh coe�cients whose signs will be changed by flipping bit p are

collected into a single number Score(x, y
p

).

In almost all cases, Score does not change after a bit flip. Only some

Walsh coe�cient are a↵ected.

42

Constant Time Steepest Descent

Assume we flip bit p to move from x to y
p

2 N(x). Construct a vector

Score such that

Score(x, y
p

) = f(y
p

)� f(x)

Thus, are the scores reflect the increase or decrease relative to f(x)

associated with flipping bit p.

In almost all cases, Score does not change after a bit flip. Only some

subfunctions are a↵ected.

43

When 1 bit flips what happens?

1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1

f1 f2 f3 f f4 m

f
i = 1

if(x) =

m

(x, mask)i

flip

The improving moves can be identified in O(1) time!

Mutation is not needed, except to diversify the search.

44

The locations of the updates are obvious

Score(y
p

, y1) = Score(x, y1)

Score(y
p

, y2) = Score(x, y2)

Score(y
p

, y3) = Score(x, y3)� 2(
X

8b, (p^3)⇢b

w0
b

(x))

Score(y
p

, y4) = Score(x, y4)

Score(y
p

, y5) = Score(x, y5)

Score(y
p

, y6) = Score(x, y6)

Score(y
p

, y7) = Score(x, y7)

Score(y
p

, y8) = Score(x, y8)� 2(
X

8b, (p^8)⇢b

w0
b

(x))

Score(y
p

, y9) = Score(x, y9)

45

Some Theoretical Results: k-bounded Boolean

1) No di↵erence in runtime for BEST First and NEXT First search.

2) Constant time improving move selection under all conditions.

3) Constant time improving moves in space of statistical moments.

4) Auto-correlation computed in closed form.

5) Tunneling between local optima.

46

Best Improving and Next Improving moves

“Best Improving” and “Next Improving” moves cost the same.

GSAT uses a Bu↵er of best improving moves

Buffer(best.improvement) =< M10,M1919,M9999 >

But the Bu↵er does not empty monotonically: this leads to thrashing.

Instead uses multiple Buckets to hold improving moves

Bucket(best.improvement) =< M10,M1919,M9999 >

Bucket(best.improvement� 1) =< M8371,M4321,M847 >

Bucket(all.other.improving.moves) =< M40,M519,M6799 >

This improves the runtime of GSAT by a factor of 20X to 30X.

The solution for NK Landscapes is only slightly more complicated.

47

Steepest Descent on Moments

Both f(x) and Avg(N(x)) can be computed with Walsh Spans.

f(x) =
3X

z=0

'(z)(x)

Avg(N(x)) = f(x)� 1/d
3X

z=0

2z'(p)(x)

Avg(N(x)) =
3X

z=0

'(z)(x)� 2/N
3X

z=0

z'(z)(x)

48

The Variable Interaction Graph

2

4

5

6

9
0

1

10

11

12

13

15

17

3

14

8

16

7

There is a vertex for each variable in the Variable Interaction Graph

(VIG). There must be fewer than 2k M = O(N) Walsh coe�cients.

There is a connection in the VIG between vertex v
i

and v
j

if there is a

non-zero Walsh coe�cient indexed by i and j, e.g., w
i,j

.

49

What if you want to flip 2 or 3 bits at a time?

2

4

5

6

9
0

1

10

11

12

13

15

17

3

14

8

16

7

Assume all distance 1 moves are taken.

There can never be an improving move flipping bits 2 and 7.

There can never be an improving move flipping bits 4, 6 and 9.

There can never be an improving move over combinations of bits where

there are no (non-zero) Walsh coe�cients.

50

What if you want to flip 2 or 3 bits at a time?

12,000 bit k-bounded functions

51

The Recombination Graph: a reduced VIG

2

9
0

1
11

12

13

15

3

8

16

7

When recombining the solutions S
P1 = 000000000000000000 and

S
P2 = 111100011101110110, the vertices and edges associated with

shared variables 4, 5, 6, 10, 14 are deleted to yield the recombination
graph.

Tunneling Crossover Theorem:

If the recombination graph of f contains q connected components,

then Partition Crossover returns the best of 2q solutions.

52

Decomposed Evaluation for MAXSAT

53

MAXSAT Number of recombining components

Instance N Min Median Max

aaai10ipc5 308,480 7 20 38

AProVE0906 37,726 11 1373 1620

atcoenc3opt19353 991,419 937 1020 1090

LABSno88goal008 182,015 231 371 2084

SATinstanceN111 72,001 34 55 1218

Tunneling “scans” 21000 local optima and returns the best in O(n) time

54

Decomposed Evaluation

2

4

5

6

9
0

1

10

11

12

13

15

17

3

14

8

16

7

2

9
0

1
11

12

13

15

3

8

16

7

A new evaluation function can be constructed:

g(x) = c+ g1(x0, x1, x2) + g2(x9, x11, x16) + g2(x3, x7, x8, x12, x13, x15)

where g(x) evaluates any solution (parents or o↵spring) that resides in

the subspace ****000***0***0**.

In general:

g(x) = c+
qX

i=1

g
i

(x,mask
i

)

55

Partition Crossover and Local Optima

The Subspace Optimality Theorem: For any k-bounded
pseudo-Boolean function f , if Parition Crossover is used to recombine

two parent solutions that are locally optimal, then the o↵spring must be

a local optima in the hyperplane subspace defined by the bits shared in

common by the two parents.

Example: if the parents 0000000000 and 1100011101

are locally optimal, then the best o↵spring

is locally optimal in the hyperplane subspace **000***0*.

56

Percent of O↵spring that are Local Optima

Using a Very Simple (Stupid) Hybrid GA:

N k Model 2-point Xover Uniform Xover PX

100 2 Adj 74.2 ±3.9 0.3 ±0.3 100.0 ±0.0

300 4 Adj 30.7 ±2.8 0.0 ±0.0 94.4 ±4.3

500 2 Adj 78.0 ±2.3 0.0 ±0.0 97.9 ±5.0

500 4 Adj 31.0 ±2.5 0.0 ±0.0 93.8 ±4.0

100 2 Rand 0.8 ±0.9 0.5 ±0.5 100.0 ±0.0

300 4 Rand 0.0 ±0.0 0.0 ±0.0 86.4 ±17.1

500 2 Rand 0.0 ±0.0 0.0 ±0.0 98.3 ±4.9

500 4 Rand 0.0 ±0.0 0.0 ±0.0 83.6 ±16.8

57

Number of partition components discovered

N k Model Paired PX

Mean Max

100 2 Adjacent 3.34 ±0.16 16

300 4 Adjacent 5.24 ±0.10 26

500 2 Adjacent 7.66 ±0.47 55

500 4 Adjacent 7.52 ±0.16 41

100 2 Random 3.22 ±0.16 15

300 4 Random 2.41 ±0.04 13

500 2 Random 6.98 ±0.47 47

500 4 Random 2.46 ±0.05 13

Paired PX uses Tournament Selection. The first parent is selected by

fitness. The second parent is selected by Hamming Distance.

58

Optimal Solutions for Adjacent NK

2-point Uniform Paired PX

N k Found Found Found

300 2 18 0 100

300 3 0 0 100

300 4 0 0 98

500 2 0 0 100

500 3 0 0 98

500 4 0 0 70

Percentage over 50 runs where the global optimum was Found in the

experiments of the hybrid GA with the Adjacent NK Landscape.

59

Tunnelling Local Optima Networks

NK Landscapes: Ochoa et al. GECCO 2015

Adjacent (easy) NK Landscapes have more optima.

But Random (hard) NK Landscapes have disjunct “funnels.”

60

NK and Mk Landscapes, P and NP

61

NK and Mk Landscapes, P and NP

62

Decomposed Evaluation for MAXSAT

N= 1,067,657

63

Decomposed Evaluation for MAXSAT

N= 182,015

64

65

MAXSAT Number of recombining components

Instance N Min Median Max

aaai10ipc5 308,480 7 20 38

AProVE0906 37,726 11 1373 1620

atcoenc3opt19353 991,419 937 1020 1090

LABSno88goal008 182,015 231 371 2084

SATinstanceN111 72,001 34 55 1218

Imagine:

crossover ”scans” 21000 local optima and returns the best in O(n) time

66

What’s (Obviously) Next?

Deterministic Recombination Iterated Local Search (DRILS)

This exploits contant time deterministic improving moves selection and

deterministic partition crossover.

67

Early MAXSAT Results

68

Early MAXSAT Results

69

One Million Variable NK Landscapes

This configuration is best for Adjacent NK Landscapes with low K value.

We can now solve 1 million variable NK-Landscapes to optimality in

approximately linear time. This exploits contant time deterministic

improving moves selection and deterministic partition crossover.

70

One Million Variable NK Landscapes

Scaling for runtime, Adjacent NK Landscapes with K = 2 (k = 3).

71

One Million Variable NK Landscapes

This DRILS configuration is best for Random NK Landscapes,

and in general problems with higher values of K.

This exploits contant time deterministic improving moves selection and

deterministic partition crossover.

GECCO TUTORIAL: Next Generation Genetic Algorithms

Best Paper Nomination, GA Track, GECCO 2017

72

Cast Scheduling: K. Deb and C. Myburgh.

A foundry casts objects of various sizes and numbers by melting metal on

a crucible of capacity W. Each melt is called a heat.

Assume there N total objects to be cast, with r
j

copies of the jth object.

Each object has a fixed weight w
i

, thereby requiring M =
P

N

j=1 rjwj

units of metal.

DEMAND: Number of copies of the jth object.

CAPACITY of the crucible, W.

73

Casts: Multiple Objects, Multiple Copies

74

Cast Scheduling: Deterministic Recombination

Recombination is illustrated for a small problem with N = 10, H = 4,
with capacity W = 650. Demand (r

j

) is shown in the final row.

75

Cast Scheduling: Deterministic Recombination

Columns indicate objects and rows indicate heats. The last column printsP
N

j=1 wj

x
ij

for each heat. O↵spring are constructed using the best rows.

76

Cast Scheduling: Deterministic Recombination

Parent 2 has a better metal utilization for rows 1, 2 and 4. Row 3 is

taken from Parent 1. Recombination is greedy.

77

Cast Scheduling: Deterministic Recombination

Repair operators are applied to o↵spring solution.

Repair 1: The respective variables are increased (green) or decreased

(blue) to meet Demand.

78

Cast Scheduling: Deterministic Recombination

Repair operators are applied to o↵spring solution.

Repair 2: Objects are moved to di↵erent heats within the individual

columns to reduce or minimize infeasibility.

79

One Billion Variables

Breaking the Billion-Variable Barrier in Real World Optimization Using a

Customized Genetic Algorithm. K. Deb and C. Myburgh. GECCO 2016.

80

What’s (Obviously) Next?

Put an End to the domination of Black Box Optimization.

Wait for Tonight and Try to Take over the World.

