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Introduction

Original PSO has been developed to solve optimization problems
that are

unconstrained/boundary constrained
static
single-objective
continuous-valued

However:
Can PSO be used to solve optimization problems of different
classes, without significantly changing the principles of the basic
PSO?
If this is the case, we say that PSO is a universal optimizer
For each problem class, what are the issues, and how can PSO
be adapted to address these issues, while still maintaining the
behavioral principles of PSO?
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Introduction (cont)

Goal:
To show that PSO is a universal optimizer
Not to present a review of the best possible approaches to solve
optimization problems of the different problem classes, but to
show that PSO can solve these problems
Focus is on simple, efficient approaches
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Optimization Problem Classes

A number of different optimization problem classes can be identified
Unconstrained
Boundary constrained
Constrained
Multi-objective, many-objective
Multi-modal
Dynamic and noisy
Continuous-valued versus discrete-valued
Large scale problems
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Basic Foundations of Particle Swarm Optimization
Main Components

What are the main components?
a swarm of particles
each particle represents a candidate solution
elements of a particle represent parameters to be optimized

The search process:
Position updates

xi(t + 1) = xi(t) + vi(t + 1), xij(0) ⇠ U(xmin,j , xmax ,j)

Velocity (step size)
drives the optimization process
step size
reflects experiential knowledge and socially exchanged information
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Basic Foundations of Particle Swarm Optimization
Social Network Structures

Social network structures are used to determine best
positions/attractors

: Star Topology : Ring Topology

: Von Neumann
Topology
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Basic Foundations of Particle Swarm Optimization
global best (gbest) PSO

uses the star social network
velocity update per dimension:

vij(t + 1) = vij(t) + c1r1j(t)[yij(t)� xij(t)] + c2r2j(t)[ŷj(t)� xij(t)]

vij(0) = 0 (preferred)
c1, c2 are positive acceleration coefficients
r1j(t), r2j(t) ⇠ U(0, 1)
note that a random number is sampled for each dimension
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Basic Foundations of Particle Swarm Optimization
gbest PSO (cont)

yi(t) is the personal best position calculated as (assuming
minimization)

yi(t + 1) =
⇢

yi(t) if f (xi(t + 1)) � f (yi(t))
xi(t + 1) if f (xi(t + 1)) < f (yi(t))

ŷ(t) is the global best position calculated as

ŷ(t) 2 {y0(t), . . . , yns(t)}|f (ŷ(t)) = min{f (y0(t)), . . . , f (yns(t))}

or (removing memory of best positions)

ŷ(t) = min{f (x0(t)), . . . , f (xns(t))}

where ns is the number of particles in the swarm
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Basic Foundations of Particle Swarm Optimization
local best (lbest) PSO

uses the ring social network

vij(t + 1) = vij(t) + c1r1j(t)[yij(t)� xij(t)] + c2r2j(t)[ŷij(t)� xij(t)]

ŷi is the neighborhood best, defined as

ŷi(t + 1) 2 {Ni |f (ŷi(t + 1)) = min{f (x)}, 8x 2 Ni}

with the neighborhood defined as

Ni = {yi�nNi
(t), yi�nNi +1(t), . . . , yi�1(t), yi(t), yi+1(t), . . . , yi+nNi

(t)}

where nNi is the neighborhood size
neighborhoods based on particle indices, not spatial information
neighborhoods overlap to facilitate information exchange
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Basic Foundations of Particle Swarm Optimization
Velocity Components

previous velocity, vi(t)
inertia component
memory of previous flight direction
prevents particle from drastically changing direction

cognitive component, c1r1(yi � xi)
quantifies performance relative to past performances
memory of previous best position
nostalgia

social component, c2r2(ŷi � xi)
quantifies performance relative to neighbors
envy
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Basic Foundations of Particle Swarm Optimization
PSO Iteration Strategies

Synchronous Iteration Strategy

Create and initialize the swarm;
repeat

for each particle do

Evaluate particle’s fitness;
Update particle’s personal
best position;
Update particle’s
neighborhood best position;

end

for each particle do

Update particle’s velocity;
Update particle’s position;

end

until stopping condition is true;

Asynchronous Iteration Strategy

Create and initialize the swarm;
repeat

for each particle do

Update the particle’s velocity;
Update the particle’s position;
Evaluate particle’s fitness;
Update the particle’s personal
best position;
Update the particle’s
neighborhood best position;

end

until stopping condition is true;
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Discrete-Valued Variables
Introduction

What is the problem?
PSO was originally developed for optimizing continuous-valued
variables
That is xij 2 R
Uses vector algebra on floating-point vectors to adjust search
positions

How do we adapt PSO so that xij 2 {0, 1}?
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Discrete-Valued Variables
Binary PSO

Adapting PSO for binary-valued variables: Binary PSO
Velocity remains a floating-point vector, but meaning changes
Velocity is no longer a step size, but is used to determine a
probability of selecting bit 0 or bit 1
Position is a bit vector, i.e. xij 2 {0, 1}
How to interpret velocity as a probability?

pij(t) =
1

1 + e�vij (t)

Then, position update changes to

xij(t + 1) =
⇢

1 if U(0, 1) < pij(t + 1))
0 otherwise
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Discrete-Valued Variables
Binary PSO (cont)

Velocity clamping:
sets the minimal probability for a bit change
if Vmax ,j = 4, then sig(Vmax ,j) = 0.982 is the probability of xij to
change to bit 1, and 0.018 the probability to change to bit 0
small values for Vmax ,j promotes exploration
for Vmax ,j = 0, the search changes to a random search
large values for Vmax ,j promotes exploitation
start with small Vmax ,j that increases over time
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Discrete-Valued Variables
Binary PSO (cont)

Inertia weight:
w < 1 works against convergence, as vij becomes zero over time,
and each bit then has a 50% change of changing
velocity should not become zero
start with small w , increase over time

Velocity initialization: Initialize to zero.
for vij > 1, limt!1 sig(vij(t))! 1 and the probability that all bits
change to 1 increases
for vij < �1, limt!1 sig(vij(t))! 0 and the probability that all bits
change to 0 increases
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Discrete-Valued Variables
Binary PSO (cont)

Some issues with the binary PSO:
Changes the meaning of the velocity update

No longer a step size
No longer a search trajectory

Effect of control parameters change
Theoretical analysis of standard PSO no longer applies
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Discrete-Valued Variables
Angle Modulated PSO (AMPSO)

An approach to solve a Bnx -dimensional problem in R4

Velocities and particle positions remain floating-point vectors
Find a bitstring generating function, used to generate the bitstring
solution
The generating function:

g(x) = sin(2⇡(x � a)⇥ b ⇥ cos(2⇡(x � a)⇥ c)) + d

where x is a single element from a set of evenly separated
intervals determined by the required number of bits that need to
be generated
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Discrete-Valued Variables
AMPSO (cont)

g(x) = sin(2⇡(x � a)⇥ b ⇥ cos(2⇡(x � a)⇥ c)) + d

The coefficients determine the shape
of the generating function:

a: horizontal shift of generating
function
b: maximum frequency of the sin
function
c: frequency of the cos function
d : vertical shift of generating
function
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Discrete-Valued Variables
AMPSO (cont)

Use a standard PSO to find the best values for these coefficients
Generate a swarm of 4-dimensional particles;
repeat

Apply any PSO for one iteration;
for each particle do

Substitute values for coefficients a, b, c and d into generating
function;
Produce nx bit-values to form a bit-vector solution;
Calculate the fitness of the bit-vector solution in the original
bit-valued space;

end

until a convergence criterion is satisfied ;
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Multi-Modal Optimization (Niching)
Introduction

Assuming minimization,

Boundary constrained optimization problem:

minimize f (x), x = (x1, x2, . . . , xnx )

subject to xj 2 dom(xj)

where x 2 F = S, and dom(xj) is the domain of variable xj .

Multi-solution problem: Find a set of solutions,

X = {x

⇤
1, x

⇤
2, . . . , x

⇤
nX }

such that each x

⇤ 2 X is a minimum of the general optimization
problem
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Multi-Modal Optimization (Niching)
Introduction (cont)

Niching capability of PSO:
Can the gbest PSO find more than one solution?

Formal proofs showed that all particles converge to a weighted
average of their personal best and global best positions

lim
t!1

xi(t) =
c1yi + c2ŷ

c1 + c2

Therefore, only one solution can be found
What if we re-run the algorithm? No guarantee to find different
solutions

What about lbest PSO?
Neighborhoods may converge to different solutions
However, due to overlapping neighborhoods, particles are still
attracted to one solution
Formal proof exist to show that all particles converge in the limit
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Multi-Modal Optimization (Niching)
Objection Function Stretching

Sequential niching, stretching the function to remove found minima
Create and initialize a nx -dimensional swarm, S, and X = ;;
repeat

Perform a single PSO iteration;
if f (S.ŷ)  ✏ then

Isolate S.ŷ;
Perform a local search around S.ŷ;
if a minimizer x

⇤
N is found by the local search then

X  X [ {x

⇤
N };

Let f (x) H(x);
end

end

Reinitialize the swarm S;
until stopping condition is true;
Return X as the set of multiple solutions;
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Multi-Modal Optimization (Niching)
Objection Function Stretching (cont)

: Effect of Sequential Niching for One Dimension
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Multi-Modal Optimization (Niching)
Niche PSO

Parallel niching PSO
Create and initialize a nx -dimensional main swarm, S;
repeat

Train main swarm, S, for one iteration using cognition-only model;
Update the fitness of each main swarm particle, S.xi ;
for each sub-swarm Sk do

Train sub-swarm particles, Sk .xi , using a full model PSO;
Update each particle’s fitness;
Update the swarm radius Sk .R;

endFor

If possible, merge sub-swarms;
Allow sub-swarms to absorb any particles from the main swarm
that moved into the sub-swarm;
If possible, create new sub-swarms;

until stopping condition is true;
Return Sk .ŷ for each sub-swarm Sk as a solution;
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Dynamic Optimization Problems
Introduction

Objective: To find and track solutions in dynamically changing
search spaces

x

⇤(t) = min
x

f (x,$(t))

where x

⇤(t) is the optimum found at time step t , and $(t) is a
vector of time-dependent objective function control parameters

Environment types:
Location of optima may change
Value of optima may change
Optima may disappear and new
ones appear
Change frequencey
Change severity

: Environment Classes
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Dynamic Optimization Problems
Introduction (cont)

Can PSO be applied to track an optimum?
Only for quasi-static environments, to some success

What are the problems?
Loss of diversity
Memory
Change detection
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Dynamic Optimization Problems
Introduction (cont)

What can be done to address these problems?
Diversity

Inject diversity into the swarm, but how much, and how?
Maintain diversity

Memory
Re-evaluate personal best and neighborhood best positions

Change detection
Use sentry particles
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Dynamic Optimization Problems
Charged PSO

Maintains diversity throughout the search process
Some particles attract one another, and others repell one another
Velocity changes to

vij(t+1) = wvij(t)+c1r1(t)[yij(t)�xij(t)]+c2r2(t)[ŷj(t)�xij(t)]+aij(t)

where ai is the particle acceleration, determining the magnitude of
inter-particle repulsion

ai(t) =
nsX

l=1,i 6=l

ail(t)

The repulsion force between particles i and l is

ail(t) =

( ⇣
Qi Ql
d3

il

⌘
(xi(t)� xl(t)) if Rc  dil  Rp

0 otherwise
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Dynamic Optimization Problems
Quantum PSO

Based on quantum model of an atom, where orbiting electrons are
replaced by a quantum cloud which is a probability distribution
governing the position of the electron
Developed as a simplified and less expensive version of the
charged PSO
Swarm contains

neutral particles following standard PSO updates
charged, or quantum particles, randomly placed within a
multi-dimensional sphere

xi(t + 1) =
⇢

xi(t) + vi(t + 1) if Qi = 0
B

ŷ

(rcloud ) if Qi 6= 0

charged particles uniformly sampled within the sphere
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Dynamic Optimization Problems
Quantum PSO (cont)

Can use different distributions:

xi(t + 1) ⇠ P(ŷ(t), rcloud)

where P is some probability distribution and rcloud is the quantum
radius

Some alternative distributions to consider:
Non-uniform (decreasing probability)
Gaussian
Cauchy
Exponential
Beta
Triangular
Weibull

Best distribution depends on type of dynamism
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Dynamic Optimization Problems
Quantum PSO (cont)
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Constrained Optimization Problems
Introduction

Constrained optimization problem:

minimize f (x), x = (x1, . . . , xnx )

subject to gm(x)  0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh

xj 2 dom(xj)

where ng and nh are the number of inequality and equality constraints
respectively
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Constrained Optimization Problems
Introduction (cont)

How do we ensure that only feasible solutions are found?
Boundary versus functional constraints
For boundary constraints:

Do not allow particles that violate boundary constraints to become
personal best positions
Reinitialize those elements that violate the boundary constraints
within the bounds

Reject infeasible solutions
Do not allow infeasible particles to become personal best or
neighborhood best positions
Replace infeasible solutions with randomly generated, feasible
solutions
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Constrained Optimization Problems
Penalty Methods

Optimization problem is reformulated as

minimize F (x, t) = f (x, t) + �p(x, t)

� is the penalty coefficien, and p(x, t) is the (possibly) time-dependent
penalty function

How to find the best penalty coefficients?
And the penalty?

p(xi , t) =
ng+nhX

m=1

�m(t)pm(xi)

where

pm(xi) =

⇢
max{0, gm(xi)

↵} if m 2 [1, . . . , ng]
|hm(xi)|↵ if m 2 [ng + 1, . . . , ng + nh]

↵ is a positive constant, representing the power of the penalty
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Constrained Optimization Problems
Penalty Methods (cont)

f (x1, x2) =
x1 cos(x1)

20
+ 2e�x2

1�(x2�1)2
+ 0.01x1x2

f(x1,x2)
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Constrained Optimization Problems
Penalty Methods (cont)

Constrained problem 1: Minimize the function

f (x) = 100(x2 � x2
1 )

2 + (1� x1)
2

subject to the nonlinear constraints,

x1 + x2
2 � 0

x2
1 + x2 � 0

with x1 2 [�0.5, 0.5] and x2  1.0.

The global optimum is x

⇤ = (0.5, 0.25), with f (x⇤) = 0.25
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Constrained Optimization Problems
Penalty Methods (cont)

: Function Landscape : Violation Space
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Constrained Optimization Problems
Penalty Methods (cont)

: With � = 1 : With � = 100
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Constrained Optimization Problems
Lagrangian Approach

Convert the constrained (primal) problem to an unconstrained problem
by defining the Lagrangian for the constrained problem:

L(x,�g ,�h) = f (x) +
ngX

m=1

�gmgm(x) +

ng+nhX

m=ng+1

�hmhm(x)

Then maximize the Lagrangian (dual problem):

maximize�g ,�h L(x,�g ,�h)
subject to �gm � 0, m = 1, . . . , ng + nh
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Constrained Optimization Problems
Lagrangian Approach (cont)

The vector x

⇤ that solves the primal problem, as well as the Lagrange
multiplier vectors, �⇤

g and �⇤
h, can be found by solving the min-max

problem,
min

x

max
�g ,�h

L(x,�g ,�h)

Engelbrecht (University of Pretoria) Universal PSO? IEEE CEC, 5-8 June 2017 42 / 62



Constrained Optimization Problems
Lagrangian Approach (cont)

A coevolutionary PSO approach to solve the above min-max problem
uses two swarms

Swarm S1 uses fitness function

f (x) = max
�g ,�h2S2

L(x,�g ,�h)

Swarm S2 uses fitness function

f (�g ,�h) = min
x2S1

L(x,�g ,�h)
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Constrained Optimization Problems
Lagrangian Approach (cont)

Create and initialize two swarms, S1 and S2, where S1 is
nx -dimensional and S2 is ng + nh dimensional;
repeat

Run a PSO algorithm on swarm S1 for S1.nt iterations;
Re-evaluate S2.yi(t), 8i = 1, . . . ,S2.ns;
Run a PSO algorithm on swarm S2 for S2.nt iterations;
Re-evaluate S1.yi(t), 8i = 1, . . . ,S1.ns;

until stopping condition is true;
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Constrained Optimization Problems
Reformulate as Multi-Objective Problem

Reformulate as a boundary constrained multi-objective optimization
problem:

f(x) = (f (x), p(x))

Solve using any multi-objective PSO algorithm

Engelbrecht (University of Pretoria) Universal PSO? IEEE CEC, 5-8 June 2017 45 / 62



Multi-Objective Problems
Introduction

Multi-objective problem:

minimize f(x)
subject to gm(x)  0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh
x 2 [xmin, xmax ]nx

where f(x) = (f1(x), f2(x), . . . , fnk (x)) 2 O ✓ Rnk

O is referred to as the objective space
The search space, S, is also referred to as the decision space
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Multi-Objective Problems
Introduction (cont)

Important things to note:
Goals are in conflict with one another
Need to achieve a balance between these objectives
A balance is achieved when a solution cannot improve any
objective without degrading one or more of the other objectives
There is not just one solution
Solutions are referred to as non-dominated solutions
Set of solutions is referred to as the Pareto-optimal set, and the
corresponding objective vectors are referred to as the Pareto front
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Multi-Objective Problems
Weighted Aggregation

Definition:

minimize
Pnk

k=1 !k fk (x)
subject to gm(x)  0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh
x 2 [xmin, xmax ]nx

!k � 0, k = 1, . . . , nk

It is also usually assumed that
Pnk

k=1 !k = 1
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Multi-Objective Problems
Weighted Aggregation (cont)

Aggregation methods have the following problems:
The algorithm has to be applied repeatedly to find different
solutions if a single-solution algorithm is used
It is difficult to get the best weight values, !k , since these are
problem-dependent
Aggregation methods can only be applied to generate members of
the Pareto-optimal set when the Pareto front is concave,
regardless of the values of !k
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Multi-Objective Problems
Pareto-Optimality

Domination: A decision vector, x1 dominates a decision vector, x2
(denoted by x1 � x2), if and only if

x1 is not worse than x2 in all objectives, i.e.
fk (x1)  fk (x2), 8k = 1, . . . , nk , and
x1 is strictly better than x2 in at least one objective, i.e.
9k = 1, . . . , nk : fk (x1) < fk (x2).

So, solution x1 is better than solution x2 if x1 � x2 (i.e. x1 dominates
x2), which happens when f1 � f2
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Multi-Objective Problems
Pareto-Optimality (cont)

Pareto-optimal: A decision vector, x

⇤ 2 F is Pareto-optimal if there
does not exist a decision vector, x 6= x

⇤ 2 F that dominates it. That is,
@k : fk (x) < fk (x⇤). An objective vector, f

⇤(x), is Pareto-optimal if x is
Pareto-optimal.
Pareto-optimal set: The set of all Pareto-optimal decision vectors
form the Pareto-optimal set, P⇤. That is,

P⇤ = {x

⇤ 2 F| 6 9x 2 F : x � x

⇤}

Pareto-optimal front: Given the objective vector, f(x), and the
Pareto-optimal solution set, P⇤, then the Pareto-optimal front,
PF⇤ ✓ O, is defined as

PF⇤ = {f = (f1(x⇤), f2(x⇤), . . . , fk (x⇤))|x⇤ 2 P}
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Multi-Objective Problems
Vector-Evaluated PSO (VEPSO)

A multi-swarm approach:
Assume K sub-objectives
K sub-swarms are used, where each optimizes one of the
objectives
Need a knowledge transfer strategy (KTS) to transfer information
about best positions between sub-swarms
Exchanged information are via selection of global guides,
replacing the global best positions in the velocity updates
Standard KTS: the ring KTS

Sub-swarms are arranged in a ring topology
Global guide of swarm Sk is swarm S(k+1) mod K
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Multi-Objective Problems
VEPSO (cont)
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Multi-Objective Problems
VEPSO (cont)

Assume two objectives

S1.vij(t + 1) = wS1.vij(t) + c1r1j(t)(S1.yij(t)� S1.xij(t))
+ c2r2j(t)(S2.ŷi(t)� S1.xij(t))

S2.vij(t + 1) = wS2.vij(t) + c1r1j(t)(S2.yij(t)� S2.xij(t))
+ c2rij(t)(S1.ŷj(t)� S.x2j(t))

where sub-swarm S1 evaluates individuals on the basis of objective
f1(x), and sub-swarm S2 uses objective f2(x)
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Multi-Objective Problems
VEPSO (cont)

Local guide selection:
Local guide replaces the personal best
Update personal best position only if the new particle position
dominates the previous personal best position

Global guide selection:
Global guide replaces the neighborhood best
Selection dictated by a knowledge transfer strategy (KTS):

Ring KTS
Random KTS
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Multi-Objective Problems
VEPSO (cont)

Using archives

Objective of archive is to keep
track of all non-dominated
solutions
Non-dominated solutions
added to archive after each
iteration
Fixed-sized archives versus
unlimited sizes
Local versus global guides

Let t = 0;
Initialize the swarm, S(t), and
archive, A(t);
repeat

Evaluate (S(t));
A(t + 1) Update(S(t),A(t));
S(t + 1) 
Generate(S(t),A(t));
t = t + 1;

until stopping condition is true;
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Large Scale Optimization
Introduction

Curse of dimensionality:
As dimensionality increases, performance deteriorates

What to do?
Increase number of particles

Increases computational complexity
Reduces step sizes, due to smaller difference vectors

Reduce the complexity of the problem, using divide-and-conquer
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Large Scale Optimization
Cooperative PSO (CPSO)

Each particle is split into K separate parts of smaller dimension
Each part is then optimized using a separate sub-swarm
If K = nx , each dimension is optimized by a separate sub-swarm
What are the issues?

Problem if there are strong dependencies among variables
How should the fitness of sub-swarm particles be evaluated?
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Large Scale Optimization
CPSO (cont)

K1 = nx mod K and K2 = K � (nx mod K );
Initialize K1 dnx/K e-dimensional and K2 bnx/K c-dimensional swarms;
repeat

for each sub-swarm Sk ,k = 1, . . . ,K do

for each particle i = 1, . . . ,Sk .ns do

if f (b(k ,Sk .xi)) < f (b(k ,Sk .yi)) then

Sk .yi = Sk .xi ;
end

if f (b(k ,Sk .yi)) < f (b(k ,Sk .ŷ)) then

Sk .ŷ = Sk .yi ;
end

end

Apply velocity and position updates;
end

until stopping condition is true;
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Large Scale Optimization
CPSO (cont)

How to cope with variable dependencies?
Pre-processing to determine correlations and group correlated
variables in same sub-swarm
Random grouping
Top-down versus bottom-up approaches
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Summary

Particle swarm optimization is an extremely simple, yet powerful
optimization method
Without changing the basic principles of PSO, minor modifications
allow PSO to be applied to a wide range of problem classes,
including:

Unconstrained
Constrained
Unimodal and multimodal
Continuous-valued and discrete-valued
Dynamically changing landscapes
Multi-objective
Multiple solutions

Various combinations of the above problem types
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Summary

We can therefore safely say that PSO is a universal optimizer
We do not say that PSO is the best for all classes of problems,
and all landscape characteristics, only that it can be applied to
solve a wide range of problem classes
This tutorial is based on the content of the following reference:
AP Engelbrecht, Fundamentals of Computational Swarm
Intelligence, Wiley, 2005.
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