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Real World Example Problem - Flight Ticket Booking

Booking a flight ticket from Singapore to Spain

Objectives are - 1) minimizing cost and 2) maximizing comfort

Different airlines available (search space) : Singapore Airlines, British Airways, Air
Asia, etc

If cost is the only objective : Air Asia, Tiger Airways, Scoot

If comfort is the only objective : Singapore Airlines, British Airways

The above solutions represent extremes
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Real World Example Problem - Flight Ticket Booking

However, there are several intermediate solutions as well : Jet Airways, Silk Air

Overall, there exists several trade-off solutions

Airline booking portals (search engines) like expedia, zuji, etc. return all the
trade-off solutions

Decision Maker (Traveler) then selects a solution according to his/her budget and
desired comfort level

No single solution can be said to be optimal in terms of both the objectives

All trade-off solutions are equally important before a solution is actually selected
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Decision Making - Buying a Car

Figure: Trade-off Solutions.

Features of a MOP

Two or three conflicting objectives

There is no single optimum solution

Multiple (trade-off) optimal solutions
exist and all such optimal solutions are
important

Without any further information, no
solution from the set of optimal
solutions can be said to be better than
other
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Mathematical Formulation of MOP
A multi-objective optimization problem (MOP) is defined as follows:

minimize F (x) = (f1(x), ..., fm(x))T subject to x ε Ω (1)

where Ω is the n-dimensional search space and x is the decision variable and F : Ω→
<m where m is the number of objectives and <m is the objective space

gj (x) ≤ 0; j = 1, 2, ..., J (2)

hk (x) ≤ 0; k = 1, 2, ...,K (3)

(xi )
L ≤ xi ≤ (xi )

U ; i = 1, 2, ..., n (4)
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Classical Multi-objective Optimization

Figure: Classical Multi-objective Optimization.

Features of Classical MOO

Advantage - Simple and adequate
when a reliable relative preference
vector is known

Limitation 1 - Estimating a relative
preference vector is difficult without
any knowledge of possible
consequences

Limitation 2 - Trade-off solution
obtained is largely sensitive to the
relative preference vector

Limitation 3 - Able to obtain only one
solution at a time
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Ideal Multi-objective Optimization

Figure: Ideal Multi-objective Optimization.

Features of Ideal MOO

Advantage 1 - More methodical,
practical and less subjective

Advantage 2 - Higher-level information
is used to evaluate and compare each
of the obtained trade-off solutions to
choose one solution

Challenge - To obtain all the trade-off
optimal solutions
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Cantilever Beam Design Problem

Figure: Decision variable space and corresponding objective space.



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Introduction to Multi-objective Optimization

Goals in Multi-objective Optimization

Goals in Multi-objective Optimization

Which solutions are optimal in MOP?

Figure: A set of six solutions.

Concept of Domination Principle

Solution A dominates solution B if

A is no worse than B in all objectives

A is strictly better than B in at least one objective
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Which solutions are optimal in MOP?

Figure: A set of six solutions.

Non-dominated solutions when viewed together in objective space form a
non-dominated front

Global non-dominated front in the objective space is called Pareto-optimal front
(PF)

Corresponding set of solutions in the decision space is called Paretio-optimal set
(PS)
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Figure: Pareto-Optimal Front.

Goals in MOO

Figure: Goals in MOO.

Goals in Ideal MOO
Convergence, and Diversity
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Multi-objective Evolutionary Algorithms

Why use Evolutionary Algorithms?

Work with a population of solutions

Search in multiple directions parallely

Can be modified to obtain PO solutions in a single run

Different frameworks modify EAs differently to obtain PO solutions
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Performance Comparison of MOEAs

In EMO literature, different performance indicators have been proposed for the
quantitative comparison of the performance of different algorithms

Indicators such as Generational Distance measure only the convergence

Indicators such as Generalized Spread measure only the diversity

However, there are some indicators which measure both convergence and
diversity

Inverted Generational Distance
Hypervolume Indicator

S. Jiang, Y. S. Ong, J. Zhang and L. Feng, Consistencies and Contradictions of Performance
Metrics in Multiobjective Optimization, in IEEE Transactions on Cybernetics, 2014
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Hypervolume Indicator

Figure: Volume of the objective space dominated by the approximation set.

S. Jiang, Y. S. Ong, J. Zhang and L. Feng, ”Consistencies and Contradictions of Performance
Metrics in Multiobjective Optimization”, in IEEE Transactions on Cybernetics, 2014
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Domination-based Framework

A MOP is optimized by simultaneously optimizing all the objectives

The assignment of fitness to solutions is based on Pareto-dominance principle

An explicit diversity preservation scheme is necessary

Example MOEAs - NSGA-II [1], SPEA2 [2]
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NSGA-II

Figure: Replacement Procedure in NSGA-II.

Non-dominated solutions are emphasized for progressing towards the PO front

Elites are preserved to provide a faster and reliable convergence near the PO front

Solutions with larger crowding distance are emphasized for maintaining a good
diversity among obtained solutions
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Indicator-based Framework

A MOP is optimized by simultaneously optimizing all the objectives

A performance indicator, in particular, the hypervolume (HV) indicator is used to
measure the fitness of a solution

HV indicator is the only known indicator that is compliant with the concept of
Pareto-dominance

Whenever a set of solutions dominates another set, its hypervolume indicator
value is higher than the one of the latte

This is the reason why most of the indicator based algorithms are based on HV

Example MOEAs - IBEA [3], SIBEA [4]
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Decomposition-based Framework

MOP is decomposed into several single-objective optimization subproblems using
scalarizing functions such as the weighted Tchebycheff

All the subproblems are optimized in a single run using an EA

Decomposition-based MOEAs utilize aggregated fitness value of solutions in the
selection

Example MOEAs - C-MOGA [6], MOEA/D [5]

This framework has attracted the most attention of researchers in the EMO
community in the last decade

Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition,
IEEE Trans. Evol. Comput, 2007
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MOEA/D

The idea of decomposition for solving MOPs had been implemented to a certain
extent in several metaheuristics

But it became popular with the introduction of MOEA/D by Zhang and Li in 2007 [5]

Characteristic Features of MOEA/D

MOP is decomposed into several scalar optimization subproblems, which are
formulated by decomposition approach such as the Tchebycheff using uniformly
distributed weight vectors

All the subproblems are solved simultaneously in a collaborative manner by
employing an EA and evolving a population of solutions

A neighborhood relation is defined among the subproblems based on the distance
between their weight vectors

Local mating as well as local replacement is implemented in a steady-state
manner
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MOEA/D

Figure: Illustration of Decomposition Approach.

Figure: Weight Vectors and Corresponding
Subproblems.
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Why neighborhood relation is defined in MOEA/D?

If weight vector λi and λj , we can say that their corresponding subproblems i.e.,
min g(x , λi ) and min g(x , λj ) are neighboring subproblems

The neighboring subproblems should have similar solutions

Thus, a neighborhood relation is defined among the subproblems based on the
distance between their weight vectors

Local mating as well as local replacement is implemented in a steady-state
manner
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Origin of MOEA/D

The original MOEA/D framework [5] has its origins, particularly in the cellular
multi-objective genetic algorithm (C-MOGA) presented by Murata and Gen in
2000 [6]

Similarities - Decomposition of MOP into several single-objective optimization
subproblems, weight vector generation method, and the idea of neighborhood for
mating selection

Difference 1 - In C-MOGA, a newly generated offspring corresponding to an index
is compared with only the current solution of the cell

However, in MOEA/D, it is compared with its neighbors as well

Thus, in MOEA/D, along with the mating neighborhood structure, there is a
replacement neighborhood structure as well

Difference 2 - In C-MOGA, only the WS scalarizing function was investigated while
in MOEA/D, the WS, the TCH, and the PBI scalarizing functions were investigated
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MOEA/D Framework

Input

Taregt MOP

N: the number of subproblems considered i.e., the population size;

λ1, λ2, . . . , λN : a set of N even distributed distributed weight vectors;

T : the neighborhood size;

At each generation, MOEA/D maintains the following

A population of N solutions x1, . . . , xN , where xi is the current solution to the i th
subproblem, and F (x1), . . . ,F (xN )

Reference point z = (z1, . . . , zm), where zj is the best value found so far for
objective fj ∀j = 1, . . . ,m
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MOEA/D Framework

Step 1: Initialization
Step 1.1 Neighborhood: Determine the T closest weight vectors to each weight vector
Step 1.2 Initial Population - randomly generated
Step 1.3 Function Evaluation
Step 1.4 Reference point (z) - Initialization

Step 2: Update
For i = 1, . . . ,N, do

Step 2.1 Reproduction: Offpsring generation via local mating using genetic
operators
Step 2.2 Repair: Offspring repair using heuristics
Step 2.3 Function Evaluation: Offspring
Step 2.4 Update of Reference point (z): Offspring is used to update z
Step 2.5 Replacement: If offspring is a better solution that the existing solutions to
neighboring subproblems, then they are replaced by the offspring

Step 3: Stopping Criteria
If termination criterion is satisfied, then obtain approximation to PO the PF else go
to Step 2
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MOEA/D

MOEA/D essentially consists of:

a set of evenly spaced weight vectors

a decompositionmethod (scalarizing function)

a neighbourhood of a fixed size defined in the weight vector space

genetic operators for reproduction (crossover and mutation)

neighborhood mating selection

steady state neighborhood replacement
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Simplex Lattice Method

Original MOEA/D and many of its subsequent variants use Das and Dennis’s
simplex-lattice design method

In this method, weight vectors are systematically sampled from a simplex

The population size N and weight vectors λ1, λ2, . . . , λN are controlled by m and
an integer H

H ≥ 0 is the number of divisions along each co-ordinate

λ1, λ2, . . . , λN are all the weight vectors in which each individual weight takes a
value from 0/H, 1/H, . . . ,H/H

Therefore, the number of weight vectors generated are N =
(H+m−1

m−1

)



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithm based on Decomposition

Studies on Weight Vector Generation Methods

Studies on Weight Vector Generation Methods

Figure: 15 weight vectors sampled on a simplex for m = 3 and H = 4

Limitations of Simplex Lattice Method

Population size grows exponentially with the number of objectives

For example, if H is set a constant 20, then population size will be 21, 231, 1771,
and 10626 for 2-5 objectives

Setting of population size is not flexible

Distribution of weight vectors is not very uniform for objectives more than three
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UMOEA/D

Tan et al. [7] proposed MOEA/D + uniform design, termed UMOEA/D for MaOPs

In UMOEA/D, the goal is to find a set of weight vectors P - λ1, λ2, . . . , λN which
are distributed uniformly

Let M(P) be a measure of non-uniformity of P, then the goal is to minimize M(P)
and obtain P∗

UMOEA/D utilizes a discrepancy measure and obtains the weight vectors which
yield minimum discrepancy in their distribution

Tan et al., ”MOEA/D + uniform design: A new version of MOEA/D for optimization problems with
many objectives,” Computers & Operations Research, 2013
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Figure: Distribution with Simplex Lattice Design

Figure: Distribution in UMOEA/D

UMOEA/D features

The weight vectors are more uniformly
distributed than the simplex lattice
design

Population size is decoupled with the
number of objectives

UMOEA/D was found to perform better
than MOEA/D and NSGA-II

DLTZ1-4 test problems with 3-5
objectives, knapsack problems with
2-4 objectives, and problems with
complicated PS shapaes
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Generalized Decomposition

Giagkiozis et al. [8] presented a novel method known as generalized
decomposition (gD)

The authors presented the gD method with respect to the TCH scalarizing function

The gD method assumes that a reference PF exists, and then for the reference
PO solutions, it obtains the optimal set of weight vectors

A limitation of the gD method is that it requires a priori information about the PF
geometry

If a priori information about the PF geometry is unavailable, a reference PF with
affine geometry can be assumed

The gD method is remarkably better than the simplex lattice design and uniform
random sampling for a wide range of PF geometries, and different number of
objective functions in generating evenly distributed points

I. Giagkiozis, R. Purshouse, and P. Fleming, ”Generalized decomposition,” in Evolutionary
Multi-Criterion Optimization. 7th International Conference, EMO 2013.

I. Giagkiozis, R. Purshouse, and P. Fleming, ”Generalized decomposition and cross entropy
methods formany-objective optimization,” Information Sciences, 2014.
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Giagkiozis et al. modified MOEA/D by incorporating gD and defining
neighborhood relationship in objective space

The resulting algorithm was named MAEA-gD

Figure: Attained PF Figure: Attained PF

I. Giagkiozis, R. Purshouse, and P. Fleming, ”Generalized decomposition,” in Evolutionary
Multi-Criterion Optimization. 7th International Conference, EMO 2013.
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Figure: Attained PF

There is a limitation in the comparative study

For fair comparison, MOEA/D should have been compared with MOEA/D + gD
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Two Layer Weight Vector Generation

With simplex lattice design, in order to have intermediate weight vectors within the
simplex, the setting of H ≥ m

In MaOP, for m = 7, even H = m will result in 1716 weight vectors

If this issue is tackled by lowering H i.e., H < m, then it will make all weight
vectors lie sparsely along the boundary of the simplex

Li et al. [9] presented a two-layer weight vector generation method for MaOPs

In this method, a set of N1 and N2 weight vectors are separately generated for
boundary and inside layers, respectively, using the simplex-lattice design method
(such that N1 + N2 = N)

K. Deb and H. Jain, ”An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: Solving problems with box
constraints,” IEEE Transactions on Evolutionary Computation, 2014.
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The set of weight vectors for the boundary and the inside layer are then combined
to represent the final weight vector set

Figure: Two layer weight vector generation, with m = 3, H1 = 2 for the boundary layer and H2 = 1 for
the inside layer

This method overcomes the limitation of the simplex-lattice design method in
generating relatively small number of evenly spread weight vectors for MaOPs
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Summary

The distribution of PO solutions is highly dependent on distribution of the weight
vectors

The weight vector generation method in UMOEA/D, gD, and two-layer generation
method decouple the population size with the number of objectives

The gD method has been found to be significantly better than the the simplex
lattice design and uniform random sampling on problems with 3 or more objectives

The two-layer weight vector generation method [9] extends the simplex-lattice
design method for many-objective optimization
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Decomposition Frameworks in Original MOEA/D

The original MOEA/D was tested with the WS, the TCH, and the PBI
decomposition approaches

WS - In this approach, the i th subproblem is defined in the form

minimize gws(x |λi ) =
m∑

j=1

λ
j
i fj (x) (5)

TCH - In this approach, the i th subproblem is defined in the form

minimize gte(x |λi , z∗) = max
1≤j≤m

{λj
i |fj (x)− z∗

j |} (6)

where z∗ = (z∗
1 , ..., z

∗
m)T is the ideal reference point with

z∗
j < min{fj (x)|x ∈ Ω} for j = 1, 2, ...,m. (7)
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Decomposition Frameworks in Original MOEA/D

PBI - In this approach, the i th subproblem is defined in the form

minimize gpbi (x |λi , z∗) = d1 + θd2

where d1 =
‖(F (x)− z∗)Tλi‖

‖λi‖

d2 = ‖F (x)− (z∗ − d1
λi

‖λi‖
)‖

(8)
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Limitations in the Traditional Decomposition Approaches

Not very suitable for MaOPs [10]

The improvement region corresponding to these methods may be too large in
some problems, resulting in low population diversity [11]

In the PBI approach, the parameter θ needs to be tuned

General Limitation of Decomposition-based MOEAs

The performance of D-MOEAs on any particular problem is dependent on the
decomposition method

Thus, it is a challenge to determine an appropriate decomposition method for a
particular problem
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some problems, resulting in low population diversity [11]

In the PBI approach, the parameter θ needs to be tuned

General Limitation of Decomposition-based MOEAs

The performance of D-MOEAs on any particular problem is dependent on the
decomposition method

Thus, it is a challenge to determine an appropriate decomposition method for a
particular problem
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Inverted PBI approach (IPBI)

In [12], Sato argued that the conventional decomposition approaches encounter
difficulty in approximating widely spread PF in some problems like MOKPs

Sato [12] extended the conventional PBI approach and proposed IPBI approach

In conventional approaches like the TCH and the PBI, solutions are evolved
towards the reference point z by minimizing the scalarizing function value

In IPBI, solutions are evolved from the nadir point n by maximizing the scalarizing
function value
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Inverted PBI approach (IPBI)

In IPBI, the i th subproblem is defined in the form

maximize g ipbi (x |λi , n) = d1 − θd2 (9)

A solution having large d1 and small d2 is considered a better solution

The experimental study on MOKPs and WFG4 problem [13], with 2-8 objectives,
illustrated that the IPBI approach can better approximate widely spread PF

H. Sato, ”Analysis of inverted PBI and comparison with other scalarizing functions in decomposition
based MOEAs,” Journal of Heuristics, 2015.
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Sato [10] investigated the robustness of scalarizing functions on problems with
different PF shapes
Concave PF - conventional WFG4 problem
Linear and Convex PF - transformed WFG4 problems
Discontinuous PF - WFG2 problem

Figure: Solutions obtained using TCH in problems with four different shapes of Pareto front. a.
Concave, b. Linear, c. Convex, d. Discontinuos
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Figure: Solutions obtained by WS in problems with four different shapes of Pareto front. a.
Concave, b. Linear, c. Convex, d. Discontinuous

WS approach failed completely on problems with concave, linear, and
discontinuous PF

Performed very well on problem with convex PF
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Figure: Solutions obtained by PBI in problems with four different shapes of Pareto front. a.
Concave, b. Linear, c. Convex, d. Discontinuous

PBI approach could not find solutions on extremes of PF for convex PF problem

On discontinuous PF problem, it could not find some portions of PF and also
returned several dominated solutions
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Figure: Solutions obtained by IPBI (θ = 10) in problems with four different shapes of Pareto front.
a. Concave, b. Linear, c. Convex, d. Discontinuous

Although IPBI approach could cover the entire PF in all problems, it also returned
many dominated solutions

Another limitation is that it requires the tuning of the parameter θ
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Yang et al. [14] investigated the influence
of the penalty parameter θ in PBI

Figure: Illustration of insufficient penalty for
weight vectors where w1 = (0.9, 0.1),
w2 = (0.8, 0.2) and θ = 1 in PBI

B and C are ideal optimal points for
subproblems associated with w1 and
w2

However, solution B of the subproblem
associated with w1 will be replaced by
C

gpbi (C|w1, z∗) = 0.6 is smaller than
gpbi (B|w1, z∗) = 0.75

Due to insufficient penalty, POF points
far away from the obtained ideal point
are replaced by those close to the
ideal point

The impact is even worse on
extremely convex problems with sharp
peak and low tail

S. Yang, S. Jiang, and Y. Jiang, ”Improving the multiobjective evolutionary algorithm based on
decomposition with new penalty schemes,” Soft Computing, pp. 115, 2016.
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Figure: Illustration of excessive penalty for weight
vectors where w1 = (0.5, 0.5), w2 = (0.4, 0.6)
and θ = 5 in PBI

For w1, PBI is expected to drive the
search toward the PF segment
between D and E

At the early stage of search, the
subproblems associated with w1 and
w2 find their best solution H and J,
respectively

J is much closer than H to the
expected PF segment

However, for subproblem associated
with w1, its current solution H will not
be replaced by J

Due to excessive penalty, solutions
close to weight vectors but far away
from the OF may be preferred over
those close to the PF but far away
from the weight vectors
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Yang et al. [14] suggested two new penalty schemes to overcome the problem of
tuning the parameter θ in PBI

Adaptive penalty scheme (APS) and Subproblem-based penalty scheme (SPS)

In APS, θ is linearly increased with the number of generations from θmin(= 1) to
θmax (= 10)

A small value of θ emphasizes convergence in the initial stage while θ is gradually
increased to emphasize diversity later

In SPS, each subproblem is assigned a different (but fixed) penalty value

In particular, the extreme subproblems are assigned a larger i.e., stricter penalty
value

Both the penalty schemes help to improve the performance of MOEA/D-PBI,
particularly in terms of better coverage of the PF

Limitation - The proposed schemes were tested on only few selected MOPs
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Wang et al. [11] defined the improvement region of a current solution xi for
subproblem i as the region in the objective space, in which if a new solution y is
produced then the current solution xi can get replaced

Figure: Illustrations of the improvement regions for : (a) WS, (b) TCH, and (c) PBI. In each
sub-figure, region A is the improvement region. The square point is the current solution of
subproblem i with the weight vector ai , the triangle point is its optimal solution and the dash
line is its contour

The figure shows that the improvement regions corresponding to the conventional
decomposition approaches may be too large for some problems

Limitation - A single new good solution can lead to replacement of several old
solutions, and result in deterioration of the population diversity
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To overcome this limitation, Wang et al. [11] suggested to impose constraints on
the subproblems to reduce the volumes of the improvement regions
Constraint - The divergence of xi to ai should be less than 0.5 ∗ θi

θi is a control parameter for defining the improvement region corresponding to
subproblem i

Figure: Illustrations of the improvement regions for constrained : (a) WS, (b) TCH, and (c)
PBI. In each sub-figure, region A is the improvement region. The square point is the current
solution of subproblem i with the weight vector ai , the triangle point is its optimal solution and
the dash line is its contour

L. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, ”Constrained subproblems in a
decomposition-based multiobjective evolutionary algorithm,” IEEE Transactions on
Evolutionary Computation, 2016.
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Studies on Improved Decomposition Approaches

Wang et al. [11] included the constrained decomposition approach in MOEA/D
and modified the replacement rules

In particular, the replacement rules are similar to constrained binary tournament
selection method

The authors proposed two variants in the study
MOEA/D-CD - which requires appropriate tuning of the θ value
MOEA/D-ACD - in which the θi value is adaptively adjusted

Both were tested on several MOPs and found to outperform MOEA/D

L. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, ”Constrained subproblems in a
decomposition-based multiobjective evolutionary algorithm,” IEEE Transactions on Evolutionary
Computation, 2016.
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Studies on Combination/Adaptation of Scalarizing functions

Ishibuchi et al. [15] compared the performance of MOEA/D-WS and
MOEA/D-TCH on MOKPs with 2-6 objectives (convex PF)

MOEA/D-WS performs remarkably better than MOEA/D-TCH on 4 and 6 objective
problems

The authors compared the approaches with respect to the number of objectives

Figure: Contour lines of the WS (a) and weighted TCH (b) scalarising functions

H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, ”Simultaneous use of different
scalarizing functions in MOEA/D,” GECCO 2010.
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The objective space is divided into two sub-spaces by the contour line

Solutions in one sub-space are better than solutions on the contour line while
solutions in the other sub-space are worse

The contour line of the WS approach is a line, and the contour line of the weighted
TCH approach is a polygonal line (with vertical angle)

For the WS approach, the size of a better region equals to half of the whole
objective space regardless of the number of objectives

Figure: Contour lines of the WS (a) and weighted TCH (b) scalarising functions
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Studies on Combination/Adaptation of Scalarizing functions

The maximal probability of replacement of an existing solution by a newly
generated solution i.e., 1/2, is not influenced by the number of objectives
Thus, the search ability of the WS approach is not affected by an increase in the
number of objectives
For the TCH approach, the size of a better region equals to (1/2)m of
m-dimensional objective space
Thus, the maximal probability of replacement i.e., the search ability significantly
decreases as the number of objective increases

Figure: Contour lines of the WS (a) and weighted TCH (b) scalarising functions
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Adaptive scalarizing function strategy

Further, Ishibuchi et al. [15] demonstrated that MOEA/D-TCH outperforms
MOEA/D-WS on modified MOKP with non-convex PF

Adaptive scalarizing function based approach for MOEA/D which automatically
employs the WS and the TCH scalarizing function approach for subproblems
along convex and non-convex regions of PF, respectively

The experimental study on modified MOKPs with non-convex PFs demonstrated
the effectiveness of the idea of adapting scalarizing functions in MOEA/D
framework

H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, ”Simultaneous use of different scalarizing
functions in MOEA/D,” GECCO 2010.
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Two phase strategy

Jiang and Yang [16] highlighted that in convex PF problems with sharp peak and
long tail, MOEA/D obtains dense solutions in the intermediate region of the PF

And can hardly achieve well-distributed solutions in the extreme region of the PF

Thus, the authors proposed a two-phase (TP) strategy for MOEA/D to tackle such
problems

In the first phase, Mr % of entire computing resources are dedicated with
MOEA/D-TCH

At the end of the first phase, the uniformity of solutions is evaluated using a
crowding based method to determine if the problem is probably convex

If the problem is convex, in the second phase, reverse TCH is used, in which
solutions are evolved from the nadir point n by maximizing the scalarizing function
value

The experimental study on 2- and 3-objective problems with convex PFs having
sharp peak and low tail confirmed the efficacy of the two-phase strategy

S. Jiang and S. Yang, An improved multiobjective optimization evolutionary algorithm based on
decomposition for complex pareto fronts, IEEE Transactions on Cybernetics, 2016
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Pareto adaptive scalarizing functions (MOEA/D-par)

Wang et al. investigated the property of the Lp weighted scalarizing functions

It is noted that in the Lp weighted approaches, p = 1 and lim p →∞ represent the
WS and the TCH approach, respectively

This study illustrated that there is a trade-off dependent on the p value between
the search ability of the Lp weighted approach and its robustness on PF geometry

Hence, the study recommended that an appropriate p value should be selected
corresponding to each subproblem on the basis of PF geometry

In MOEA/D-par, the p value is initialized as 1 for every subproblem at the
beginning

At every iteration, the PF geometry is estimated based on PF approximation using
a family of reference curves [17] corresponding to every subproblem, and the p
values associated with the subproblems are adapted accordingly
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Pareto adaptive scalarizing functions (MOEA/D-PaS)

Wang et al. [18] extended their work on MOEA/D-par [19] and presented an
enhanced online method, named Pareto-adaptive scalarizing approximation
(PaS), to approximate the optimal p value in the Lp weighted approaches

The advantage of PaS over the method presented earlier by the authors in [19] is
that MOEA/D-PaS does not require PF estimation

The PaS method in MOEA/D-PaS is simple and computationally efficient

MOEA/D-PaS is found to be highly efficient on several difficult test problems with
2-, 4-, and 7-objectives, and different PF geometries
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Summary

Summary

In the Lp weighted approach, there is a trade-off dependent on the p value
between the search ability of the approach and its robustness on PF geometry

The Pareto-adaptive scalarizing approximation (PaS) has overcome the challenge
of choosing an appropriate scalarizing function for a particular problem

The MOEA/D variants based on constrained decomposition i.e., MOEA/D-CD and
MOEA/D-ACD seem to be promising

Alternate ways of decomposition (as in MOEA/D-M2M) provide new direction in
which the objective space is partitioned into small subspaces using reference
vectors, and good solutions are emphasized in each of the subspaces to maintain
a balance between convergence and diversity
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Computational Resource Allocation in MOEA/D

In the original MOEA/D,

A fixed set of weight vectors are utilized irrespective of the characteristics of the
PF

All the subproblems are allocated equal computational effort at each generation

Limitations

Some regions of the PF might be more difficult to approximate compared to others

Fixed set of weight vectors may not hold good for all problems such as
disconnected PFs

Thus, uniform treatment of all the subproblems and fixed set of weight vectors
may lead to wastage of computational resources
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Computational Resource Allocation in MOEA/D

In the original MOEA/D,

A fixed set of weight vectors are utilized irrespective of the characteristics of the
PF

All the subproblems are allocated equal computational effort at each generation

Limitations

Some regions of the PF might be more difficult to approximate compared to others

Fixed set of weight vectors may not hold good for all problems such as
disconnected PFs

Thus, uniform treatment of all the subproblems and fixed set of weight vectors
may lead to wastage of computational resources
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Studies on Computational Resource Allocation

The studies under this class can be divided into two categories:

Computational resource allocation with fixed weight vectors

Computational resource allocation with weight vector adaptation
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Dynamic resource allocation (MOEA/D-DRA)

Zhang et al. [20] proposed MOEA/D-DRA, based on dynamic allocation of
computational resources to different subproblems

A utility function used to represent the relative improvement of the scalarizing
function for each subproblem, and computed every 50 generations

The subproblems for which the relative improvement in scaralizing function is
higher, are assigned higher utility function value otherwise it is decreased

Using a 10-tournament selection step, the subproblem with highest utility function
value from 10 randomly selected subproblems enter the exploration phase

Thus, the computational resources are dynamically allocated to those
subproblems for which the utility function is higher

MOEA/D-DRA is the winner of unconstrained MOEA competition of CEC 2009.

Q. Zhang, W. Liu, and H. Li, The performance of a new version of MOEA/D on CEC 2009
unconstrained mop test instances, CEC 2009
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Generalized Resource Allocation (MOEA/D-GRA)

Zhou and Zhang [21] extended MOEA/D-DRA and presented MOEA/D-GRA

Each subproblem is associated with a probability of improvement (PoI) vector

At each generation, computational resources are assigned to some subproblems
selected according to the PoI vector

The authors introduced both offline (OFRA) and online (ONRA) resource
allocation strategy in MOEA/D

A. Zhou and Q. Zhang, ”Are all the subproblems equally important? Resource allocation in
decomposition-based multiobjective evolutionary algorithms,” IEEE Transactions on Evolutionary
Computation, 2016
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Offline Resource Allocation Strategy

To implement this strategy, a key task
is to first define and measure the
subproblem hardness

The authors chose a problem T1 and
decomposed it into 300 subproblems

Executed CoDE [?] on each
subproblem and recorded the average
number of FEs for reducing the
objective function value below a given
error

The average number of FEs is used to
measure the hardness of each
subproblem and define the PoI vector

Figure: The FE values for different subproblems
to achieve the goal that error ≤ 10−5 over 51
runs
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Online Resource Allocation Strategy

To implement this strategy, a key issue is to measure subproblem hardness in an
online manner

As in MOEA/D-DRA [20], the authors defined utility function as the relative
improvement in the last ∆T generations

The PoI vector for subproblem i is defined as the ratio of its utility function to the
maximum utility function across all the subproblems

The experimental study demonstrated that ONRA strategy is superior to OFRA
and NORA

The experimental study on several MOPs demonstrated that MOEA/D-GRA
significantly outperforms both MOEA/D-DE [22] and MOEA/D-DRA [20]
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External Archive Guided MOEA/D (MOEA/D-EAG)

Cai et al. [23] proposed an external archive guided MOEA/D, termed
EAG-MOEA/D

EAG-MOEA/D evolves an internal (working) population using MOEA/D, and
updates the external archive using non-dominated sorting and crowding distance
principle of NSGA-II

It records the number of successful solutions each subproblem contributes to the
external archive over L previous generations

The subproblems are probabilistically allocated computational resources
depending upon their respective contribution to the external archive

The external archive guides MOEA/D in allocating computation resources
depending upon the historical convergence and diversity information

EAG-MOEA/D significantly outperforms NSGA-II [1], MOEA/D [5], and
MOEA/D-DRA [20] on multiobjective software next release problem (MNRP) and
multiobjective traveling salesman problem (MTSP)

X. Cai, Y. Li, Z. Fan, and Q. Zhang, ”An external archive guided multiobjective evolutionary
algorithm based on decomposition for combinatorial optimization,” IEEE Transactions on
Evolutionary Computation, 2015
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External Archive Guided MOEA/D (MOEA/D-EAG)

Figure: The final non-dominated solutions found by NSGA-II, MOEA/D and EAG-MOEA/D on an
instance of 2-objective TSP



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithm based on Decomposition

Studies on Computational Resource Allocation

Computational Resource Allocation with Fixed Weight Vectors

External Archive Guided MOEA/D (MOEA/D-EAG)

Figure: The final non-dominated solutions found by EA-MOEA/D and EAG-MOEA/D on an instance
of 2-objective TSP
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MOEA/D with Support Vector Machine (MOEA/D-SVM)

Lin et al. [24] presented a MOEA/D variant with classification based on SVM

In MOEA/D-SVM, a classification model is built on the search space

For the training set, the solutions in the current population are regarded as the
promising solutions and the most recently discarded solutions for each
subproblem as unpromising ones

Thus, the model is designed to be accurate in the search area around the current
population

MOEA/D-SVM classifies all new solutions and performs function evaluation of all
promising solutions

Unpromising solutions are evaluated with small probability for exploration purpose

The experimental study demonstrated that the classification approach can
significantly improve the performance of MOEA/D

X. Lin, Q. Zhang, and S. Kwong, A decomposition based multiobjective evolutionary algorithm with
classification, WCCI 2016
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Adaptive Weight Vector Adjustment (MOEA/D-AWA)

Qi et al. [25] highlighted that in MOPs with discontinuous PF, several subproblems
will have the same solution

Thus, dealing with such problems simultaneously will lead to wastage of
computational resources

Further, for problems with sharp peak and low tail, MOEA/D cannot produce
uniformly distributed solutions in extreme regions of PF

To tackle such MOPs with complex PFs, the authors proposed an adaptive weight
vector adjustment (AWA) strategy and integrated within MOEA/D-DRA

It is based on a two-stage strategy where a set of predetermined weight vectors
are employed until it converges to certain extent

MOEA/D-AWA utilizes an external population to store the visited non-dominated
solutions and to guide the algorithm in removal and addition of subproblems

Y. Qi et al., MOEA/D with adaptive weight adjustment, Evolutionary Computation, 2014
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Adaptive Weight Vector Adjustment (MOEA/D-AWA)

Figure: Performance comparison on DTLZ1
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Computational Resource Allocation with Weight Vector Adaptation

Adaptive Weight Vector Adjustment (MOEA/D-AWA)

Figure: Performance comparison on DTLZ2
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Computational Resource Allocation with Weight Vector Adaptation

Adaptive Weight Vector Adjustment (MOEA/D-AWA)

Figure: Performance comparison on F1
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Figure: Performance comparison on F2
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Summary

Depending upon the hardness of the problem, different subproblems may require
different computational budget in order to be efficiently solved [21]

Strategies based on dynamic computational resource allocation to different
subproblems can improve the performance of MOEA/D [20], [21]

Weight vector adaptation is essential for target MOP with complex or irregular PF
(e.g. discontinuous PF, PF with sharp peak and low tail)

Use of external archive to store non-dominated solutions and guide the internal
working population of MOEA/D as in MOEA/D-AWA [25], EAG-MOEA/D [23] is
highly promising
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Reproduction Operators in Original MOEA/D

In original MOEA/D, the genetic operators - simulated binary crossover (SBX) and
polynomial mutation operators have been used

However, it is well known that there is no single EA which outperforms all other
EAs across different problems

Thus, several studies have aimed at modifying the reproduction operators in order
to improve the performance of decomposition based MOEAs
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Reproduction Operation based on DE

MOEA/D-DE

Differential evolution (DE) is a very popular optimizer known for its simplicity and
efficiency in solving real parameter optimization problems

Li and Zhang [22] proposed an enhanced version of MOEA/D using differential
evolution (DE) algorithm, termed MOEA/D-DE, to solve problems with
complicated Pareto sets

The study introduced nine test instances (F1-F9) with complicated PS shapes

The experimental study demonstrated that MOEA/D-DE significantly outperforms
NSGA-II-DE on all the test instances

H. Li and Q. Zhang, ”Multiobjective optimization problems with complicated Pareto sets, MOEA/D
and NSGA-II,” IEEE Trans. Evol. Comput., 2009
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Figure: Performance of MOEA/D-DE.
Figure: Performance of NSGA-II.
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Figure: Performance of NSGA-II.
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Figure: Performance of MOEA/D-DE. Figure: Performance of NSGA-II.
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Reproduction Operation based on ACO

MOEA/D-ACO

Ant colony optimization (ACO) is a very popular algorithm for solving
combinatorial optimization problems

Ke et al. [26] proposed a combination of ACO and MOEA/D, termed
MOEA/D-ACO

The experimental study comprehensively investigated the efficiency of
MOEA/D-ACO on MOKP and MTSP

L. Ke, Q. Zhang, and R. Battiti, ”MOEA/D-ACO: A multiobjective evolutionary algorithm using
decomposition and antcolony,” IEEE Trans. Cybern., 2013
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Adaptive Operator Selection (AOS)

A method that dynamically determines rate of application of different operators
considering the performance history of operators

AOS comprises of two tasks - credit assignment (CA) and operator selection
(OS)
The credit assignment task is rewarding an operator based on its recent
performance

The operator selection is choosing the operator to be applied next based on the
reward information accumulated during the optimization process

Examples of CA: average of the fitness improvements, rank based schemes like
sum of ranks (SR), and fitness rate rank (FRR)

Examples of OS: probabilistic methods such as probability matching (PM) and
adaptive pursuit (AP), or multi-armed bandit (MAB) methods like Upper
confidence bound (UCB)
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MOEA/D with Fitness-rate-rank-based Multi-armed bandit (MOEA/D-FRRMAB)

Li et al. [27] proposed MOEA/D-FRRMAB which utilizes FRR based credit
assignment scheme and MAB based operator selection scheme

The operator pool consists of four different DE variants namely DE/rand/1,
DE/rand/2, DE/current-to-rand/1 and DE/current-to-rand/2,

The authors incorporated the proposed FRRMAB method within MOEA/D-DRA
[20]

MOEA/D-FRRMAB significantly outperforms MOEA/D-DE [22], MOEA/D-DRA [20]
on CEC 2009 [28] MOPs

K. Li, A. Fialho, S. Kwong, and Q. Zhang, ”Adaptive operator selection with bandits for a
multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput, 2014



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithm based on Decomposition

Studies on Modifications in the Reproduction Operators

Adaptive Operator Selection for Reproduction

MOEA/D with Fitness-rate-rank-based Multi-armed bandit (MOEA/D-FRRMAB)

Figure: Operator adaptation trajectories of MOEA/D-FRRMAB on a) UF1, and b) UF2

No single operator can dominate over the whole search process on different test
instances

FRRMAB can use different operators at different search stages and that it can
efficiently switch from one operator to another

For most of the instances, operators 2 and/or 3 (favor exploration) are preferred at
early stages, while operators 1 and/or 4 (favor exploitation) are more frequently
used at later stages
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Summary

MOEA/D-DE is highly suitable for MOPs with complex PS shapes

MOEA/D-ACO is a good algorithm for combinatorial MOPs

Interesting work is being conducted on incorporating adaptive operator selection
(AOS) in the MOEA/D framework
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Mating Selection and Replacement in Original MOEA/D

The neighborhood structure as well as the neighborhood size (NS) play an
important role in MOEA/D

Because mating selection and update of neighboring solutions is dependent on
neighborhood structure as well as NS

In the original MOEA/D, the neighborhood relationship is defined in the weight
vector space

The neighborhood structure as well as the NS remain fixed throughout the
evolutionary process

A single good offspring solution can replace several inferior neighboring solutions
and lead to deterioration of the population diversity
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Studies on Mating Selection and Replacement Mechanism

Studies conducted on mating selection and replacement mechanism can be classified
in three major categories:

Studies on the mating selection

Studies on the replacement mechanism

Studies on both mating selection and replacement mechanism
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MOEA/D-DE

Besides the introduction of DE operators in MOEA/D, Li and Zhang [22] refined
the MOEA/D framework by introducing two extra measures

The first measure allows parent solutions to be selected during reproduction with
a low probability from the whole population (i.e., outside the neighborhood)

The second measure puts an upper bound (nr ) on the maximal number of
solutions that can be replaced by a child solution during the update of neighboring
solutions

The introduction of these extra measures help to maintain the population diversity

H. Li and Q. Zhang, ”Multiobjective optimization problems with complicated Pareto sets, MOEA/D
and NSGA-II,” IEEE Trans. Evol. Comput., 2009



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithm based on Decomposition

Studies on Mating Selection and Replacement Mechanism

Studies on the Mating Selection

Niche-guided Mating Scheme

Jiang and Yang [16] presented a niche-guided scheme for the setting of mating
selection range

In this scheme, each individual’s niche count is computed over its T neighboring
subproblems

If the niche count of an individual is over a certain threshold, it means that the
individual is similar to its T neighboring subproblems

Thus the mating parents corresponding to the individual are selected from outside
its neighborhood

The strategy is particularly beneficial on 2-3 objective problems having
disconnected PFs

S. Jiang and S. Yang, An improved multiobjective optimization evolutionary algorithm based on
decomposition for complex Pareto fronts, IEEE Trans. Cybern., 2016



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithm based on Decomposition

Studies on Mating Selection and Replacement Mechanism

Studies on the Replacement Mechanism

Global Replacement Scheme based MOEA/D (MOEA/D-GR)

Wang et al. [29] argue that the new solution xnew
i of subproblem i may not be the

most suitable solution for its neighboring subproblems B(i)

Thus, xnew
i will get discarded in the update stage unless a very big replacement

neighborhood size is used

Figure: Example case

Z. Wang, Q. Zhang, M. Gong, and A. Zhou, ”A replacement strategy for balancing convergence and
diversity in MOEA/D,” CEC 2014
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Global Replacement Scheme based MOEA/D (MOEA/D-GR)

To overcome this shortcoming, the authors proposed a global replacement (GR)
scheme for MOEA/D and named the resulting algorithm as MOEA/D-GR
In this study, two different neighborhoods i.e., mating neighborhood (of size Tm)
and replacement neighborhood (of size Tr ), are considered for each subproblem i

In the GR scheme, corresponding to a newly generated solution xnew
i , the most

appropriate subproblem j is determined

Thereafter, Tr closest subproblems to subproblem j are selected to form the
replacement neighborhood i.e., Br (j)

Finally, the solutions of subproblems belonging to Br (j) are updated by the newly
generated solution xnew

i

Z. Wang, Q. Zhang, M. Gong, and A. Zhou, ”A replacement strategy for balancing convergence and
diversity in MOEA/D,” CEC 2014
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Adaptive Global Replacement Scheme based MOEA/D (MOEA/D-GR)

Wang et al. [30] extended the GR scheme proposed in [29] and developed an
adaptive GR scheme

The authors argue that a small Tr is good for exploration at the beginning of the
search process while a large Tr is good for exploitation towards the end of the
search process

The study investigated three different adaptive schemes for adjusting Tr , based on
linear, exponential, and sigmoid functions

Based on the adaptive replacement strategy, both a steady-state algorithm
(named MOEA/D-AGR) and a generational algorithm (named gMOEA/D-AGR) are
presented

MOEA/D-AGR is found to be superior to several state-of-the-art MOEAs

Z. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, Adaptive replacement strategies for MOEA/D,
IEEE Trans. Cybern., 2016
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ENS-MOEA/D

To overcome the problem of choosing a suitable NS for different problems, Zhao et
al. [31] proposed an algorithm known as ENS-MOEA/D

A pool of different NSs are used in the form of an ensemble

The selection probabilities of NSs are dynamically adjusted based on their
historical performances of generating promising solutions in certain fixed number
of previous generations

The experimental study demonstrated the superiority of ENS-MOEA/D against
MOEA/D-DRA with fixed NSs on CEC 2009 [28] MOPs

S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, ”Decomposition-based multiobjective evolutionary
algorithm with an ensemble of neighborhood sizes,” IEEE Trans. Evol. Comput., 2012
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MACE-gD

Giagkiozis et al. [8] presented an algorithm named MACE-gD
In MACE-gD, the neighborhood structure of a subproblem is controlled by
parameter ρ

The parameter ρ indicates the percentage of top solutions in the current
population with respect to a subproblem, which are used in building the probability
model for CE method

Thus, the neighborhood relationship is dynamically updated with respect to the
objective space and is not static or defined with respect to weight vector space as
in original MOEA/D

In the replacement step, a new solution to subproblem i is only compared with the
current solution to subproblem i

Limitation - The study did not present an experiment to validate the performance
of defining neighborhood relationship in objective space as compared to the
weight vector space

I. Giagkiozis, R. C. Purshouse, and P. J. Fleming, Generalized decomposition and cross entropy
methods for many-objective optimization, Inf. Sci., 2014
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Summary

Extensive research has been conducted to improve the mating selection and the
replacement mechanism in the MOEA/D framework

The neighborhood relationship in the weight vector space, as defined in the
original MOEA/D framework, can be deceptive to the algorithm [8]

The neighborhood relationship should be rather defined in the objective space and
should be adaptive such that solutions which participate in mating procedure are
close in the objective space [8]

MOEA/D based on adaptive global replacement scheme (MOEA/D-AGR) [30]
seems to be highly promising
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Many-objective Optimization

Many-objective optimization problems (MaOPs) refer to the class of MOPs with
four or more number of objectives

MaOPs present several challenges to MOEAs such as

With the increase in size of the objective space, balancing convergence and
diversity becomes much more difficult

Due to the computational efficiency consideration, the population size cannot be
arbitrarily large. Thus, PF in high-dimensional objective space has to be
approximated with limited number of solutions

In Pareto-dominance based MOEAs, the selection pressure severely deteriorates

In HV indicator-based MOEAs, the computational complexity to evaluate the HV
indicator grows exponentially with the increasing number of objectives
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NSGA-III

Deb and Jain presented a reference-point-based many-objective evolutionary
algorithm, termed NSGA-III [32]

The basic framework of NSGA-III is similar to NSGA-II [1] with significant
modifications in the replacement step

Further, unlike NSGA-II, the maintenance of diversity among population members
in NSGA-III is aided by supplying well spread reference points

Like weight vector generation in MOEA/D, NSGA-III also utilizes a set of reference
points that spread over the objective space

However, NSGA-III does not decompose the MOP explicitly into single-objective
subproblems like MOEA/D

NSGA-III uses a generational replacement scheme like NSGA-II

Further, at each generation, NSGA-III performs normalization of population
members in the objective space, and associate each population member with a
reference point

K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems with box
constraints, IEEE Trans. Evol. Comput., 2014
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NSGA-III

To select solutions from the last acceptable front, a niche-preservation operator is
used, in which solutions associated with less crowded reference point have a
higher chance to be selected

The experimental study compared NSGA-III with MOEA/D-TCH, MOEA/D-PBI,
and MOEA/D-DE [22] on several MaOPs ranging from 3-15 objectives

The experimental results demonstrated that MOEA/D-TCH and MOEA/D-DE
perform quite poorly on most of the problems

NSGA-III performs better on some test problems while MOEA/D-PBI performs
better on some other problems

The efficacy of NSGA-III is also demonstrated on two real-world problems -
3-objective crash worthiness vehicle design and 9-objective car design problem
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Figure: Performance of NSGA-III on DTLZ1. Figure: Performance of MOEA/D-TCH on DTLZ1.

K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems with box
constraints, IEEE Trans. Evol. Comput., 2014



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithm based on Decomposition

Studies on Many-objective Optimization

Studies on Many-objective Optimization

Figure: Performance of MOEA/D-PBI on DTLZ1.

Figure: Performance of MOEA/D-TCH on DTLZ2.

K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems with box
constraints, IEEE Trans. Evol. Comput., 2014
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Figure: Performance of MOEA/D-PBI on DTLZ1. Figure: Performance of MOEA/D-TCH on DTLZ2.

K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems with box
constraints, IEEE Trans. Evol. Comput., 2014
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Figure: Performance of NSGA-III on DTLZ2.
Figure: Performance of MOEA/D-PBI on DTLZ2.

K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems with box
constraints, IEEE Trans. Evol. Comput., 2014
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Figure: Reference points on normalized
hyperplane. Figure: Preferred solutions obtained by NSGA-III

DTLZ1.

K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems with box
constraints, IEEE Trans. Evol. Comput., 2014
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NSGA-III

Jain and Deb [33] extended NSGA-III [32] to tackle constrained optimization
problems

In constrained NSGA-III, the constraint binary tournament selection operator of
NSGA-II is used in selecting parents for mating

Further, in the elitist selection operator, the constraint-domination principle of
NSGA-II is adopted to classify the combined parent offspring population into
nondomination levels

In the same study [33], Jain and Deb also proposed a constrained MOEA/D

The constraint handling mechanism in C-MOEA/D is based on the modification of
the replacement step

When comparing offspring solution with a neighboring solution, rules similar to
constrained binary tournament selection are applied

H. Jain and K. Deb, An evolutionary many-objective optimization algorithm using reference-point
based nondominated sorting approach, part II: Handling constraints and extending to an adaptive
approach, IEEE Trans. Evol. Comput, 2014
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In [33], Jain and Deb introduced three different type of constrained optimization
problems which are scalable with respect to objectives as well as number of
decision variables
These problems were designed to introduce different types of difficulties
In Type-1 constrained problems, the original PF is still optimal, but there is an
infeasible barrier in approaching the PF

Figure: Two-objective version of the C1-DTLZ1
problem.

Figure: Two-objective version of the C1-DTLZ2
problem.
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decision variables
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In Type-1 constrained problems, the original PF is still optimal, but there is an
infeasible barrier in approaching the PF

Figure: Two-objective version of the C1-DTLZ1
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Figure: Two-objective version of the C1-DTLZ2
problem.



Recent Advances in Multi-objective and Many-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithm based on Decomposition

Studies on Many-objective Optimization

Studies on Many-objective Optimization

Figure: Performance of NSGA-III on C1-DTLZ1
problem.

Figure: Performance of C-MOEAD on C1-DTLZ1
problem.
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Figure: Performance of NSGA-III on C1-DTLZ3
problem.

Figure: Performance of C-MOEAD on C1-DTLZ3
problem.
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In [33], Jain and Deb argued that in many constrained or even unconstrained
problems, there will be some reference points with no PO solution associated with
them

On the other hand, there will be some reference points which have more than one
PO solution associated with them

Hence, NSGA-III may not be able to generate uniformly distributed PO solutions
over then entire PF for such problems

Figure: Example case for Inverted DTLZ1 problem
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Figure: Example case for Inverted DTLZ1 problem

NSGA-III with 91 reference points was run on the problem
PO solutions (big solid circles) were found from 28 different useful reference
points, but the remaining 63 reference points could not associate a PO solution
The solutions marked in small open circles are additional solutions to the 28
useful reference points
Since locations of these additional solutions are not used in any careful manner in
the algorithm, their distribution is somewhat random
Not only is the final population non-uniform, there is a wastage of computational
efforts in processing these solutions
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Adaptive NSGA-III

To overcome this difficulty, the authors presented an adaptive NSGA-III, named
A-NSGA-III

A-NSGA-III always preserves the original reference points

Adaptively adds new reference points around a crowded reference point which
has more than one population member associated with it

Adaptively deletes reference points which have no population member associated
with them

H. Jain and K. Deb, An evolutionary many-objective optimization algorithm using reference-point
based nondominated sorting approach, part II: Handling constraints and extending to an adaptive
approach, IEEE Trans. Evol. Comput, 2014
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NSGA-III Performance

Figure: Obtained solutions using NSGA-III on the
inverted DTLZ1 problem (only the closest solution
for every useful reference point is shown).

Adaptive NSGA-III Performance

Figure: Obtained solutions using adaptive
NSGA-III on the inverted DTLZ1 problem (only
the closest solution for every useful reference
point is shown).
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Li et al. [9] proposed a unified paradigm, termed MOEA/DD, based on
combination of dominance- and decomposition-based approaches

Each weight vector in MOEA/DD along with defining a subproblem, also specifies
a unique subregion in the objective space
Thus, each solution is always associated with a unique subregion and the problem
of diversity management is addressed by local density estimation of the
subregions
The characteristic feature of MOEA/DD is its update procedure which is carried
out in a steady-state hierarchical manner, depending on Pareto dominance, local
density estimation, and scalarizing functions, sequentially
For example, when an offspring solution is added to the parent population, and the
non-domination level is 1
The density (or niche count) of each subregion is estimated by counting the
number of solutions associated with it
Thereafter, from the most crowded subregion, the solution will the largest PBI
metric is eliminated
MOEA/DD was found to outperform NSGA-III, MOEA/D, on several MOPs with
3-15 objectives

K. Li, K. Deb, Q. Zhang, and S. Kwong, An evolutionary manyobjective optimization algorithm
based on dominance and decomposition,IEEE Trans. Evol. Comput, 2015
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Sensitivity to PF Shapes

Ishibuchi et al. [34] conducted an exhaustive performance analysis of
decomposition-based many-objective algorithms to demonstrate their sensitivity to
PF shapes

The authors slightly changed the DTLZ and WFG problem formulations by
multiplying (-1) to each objective of DTLZ and WFG problems

In comparison to the original test problems, the performance of MOEA/DD,
NSGA-III, etc. significantly deteriorated

The authors highlighted this to the reason that DTLZ1-4 and WFG4-9 have
triangular shape PFs

Thus their is a similarity between the shape of distribution of the weight vectors
and the shape of the PFs of these test problems

DTLZ1-4−1 and WFG4-9−1 have rotated triangular shape PFs

The study recommended - use of a wide variety of test problems with various PF
shapes, adaptive mechanisms for weight vectors and scalarizing functions

H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, ”Performance of decomposition-based
many-objective algorithms strongly depends on Pareto front shapes,” IEEE Trans. Evol. Comput., to
be published
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Summary

On MaOPs, MOEA/D-TCH and MOEA/D-DE do not perform well while the
performance of MOEA/D-PBI is quite well on a range of test problems [32]

The studies - NSGA-III [32], MOEA/DD [9] provide new direction in which the
high-dimensional objective space in MaOPs can be partitioned into small
subspaces using reference vectors, and sophisticated update procedures can be
employed to preserve diversity in all subspaces

Efficiently combining dominance- and decomposition-based approaches can
result in high performance many-objective optimizers (e.g., NSGA-III [32],
MOEA/DD [9], etc.)
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Decomposition Approaches

Currently, only one study [14] has investigated into methods for adaptive tuning of
the parameter θ in the PBI approach but that too has been tested only on few
MOPs

Thus, introduction of new methods to adaptively control parameter θ in PBI
approach can be interesting future direction

Combination/adaptation of scalarizing functions should be further designed so as
to avoid the efforts of choosing a particular scalarizing function

Computational Resource Allocation

Only a few decomposition-based MOEAs such as MOEA/D-AWA [25], adaptive
NSGA-III [33] have been proposed with weight vector adaptation

Thus, more studies should be undertaken to develop weight vector adaptation
strategies for decomposition-based framework
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Many-objective Optimization

Genetic operators have been used in most of the successful many-objective
optimizers (e.g. NSGA-III [32], MOEA/DD [9], etc

However, on MOPs, AOS has been found to be really beneficial [27], [35]. Thus,
investigating AOS on MaOPs is an interesting future direction

The role of neighborhood structure for mating and replacement in the
decomposition-based MOEAs can be further studied for MaOPs. This is because
I-DBEA [36] has been found to be considerably successful on MaOPs without
involving the concept of neighborhood

New decomposition-based MOEAs can be developed to efficiently tackle MaOPs

To develop such many-objective optimizers, use of reference vectors to
decompose the objective space into small multiple subspaces [32], [9], [37] and
combining decomposition-based approach with dominance- or indicator-based
approach can be a highly important component
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