Theory of Evolutionary Computation: A Gentle Introduction to the Time Complexity Analysis of Evolutionary Algorithms

Pietro S. Olivet
Department of Computer Science, University of Sheffield, UK

CEC 2017

Donostia, San Sebastian, Spain, 5 June 2017

Aims and Goals of this Tutoria

- This tutorial will provide an overview of
- the goals of time complexity analysis of Evolutionary Algorithms (EAs)
- the most common and effective techniques
- You should attend if you wish to
- theoretically understand the behaviour and performance of the search algorithms you design
- familiarise with the techniques used in the time complexity analysis of EAs
- pursue research in the area
- enable you or enhance your ability to
- understand theoretically the behaviour of EAs on different problems
- perform time complexity analysis of simple EAs on common toy problems
- read and understand research papers on the computational complexity of

EAs

- have the basic skills to start independent research in the area

Evolutionary Algorithms and Computer Science

Goals of design and analysis of algorithms

(1) correctness
"does the algorithm always output the correct solution?"
(2) computational complexity
"how many computational resources are required?"

For Evolutionary Algorithms (General purpose)

(1) convergence
"Does the EA find the solution in finite time?"
(2) time complexity
"how long does it take to find the optimum?
(time $=\mathrm{n}$. of fitness function evaluations)

Theoretical studies of Evolutionary Algorithms (EAs), albeit few, have always existed since the seventies [Goldberg, 1989]

- Early studies were concerned with explaining the behaviour rather than analysing their performance.
- Schema Theory was considered fundamental
- First proposed to understand the behaviour of the simple GA [Holland, 1992];
- It cannot explain the performance or limit behaviour of EAs
- Building Block Hypothesis was controversial [Reeves and Rowe, 2002];
- Convergence results appeared in the nineties [Rudolph, 1998];
- Related to the time limit behaviour of EAs. 0000
nalysis of EA

Definition

- Ideally the EA should find the solution in finite steps with probability 1 (visit the global optimum in finite time)
- If the solution is held forever after, then the algorithm converges to the optimum!

Convergence
Definition

- Ideally the EA should find the solution in finite steps with probability $\mathbf{1}$ (visit the global optimum in finite time);
- If the solution is held forever after, then the algorithm converges to the optimum!

Conditions for Convergence ([Rudolph, 1998])

(1) There is a positive probability to reach any point in the search space from any other point
(2) The best found solution is never removed from the population (elitism)

Definition

- Ideally the EA should find the solution in finite steps with probability 1 (visit the global optimum in finite time)
- If the solution is held forever after, then the algorithm converges to the optimum!

Conditions for Convergence ([Rudolph, 1998])

(1) There is a positive probability to reach any point in the search space from any other point
(2) The best found solution is never removed from the population (elitism)

- Canonical GAs using mutation, crossover and proportional selection Do Not converge!
- Elitist variants Do converge!

In practice, is it interesting that an algorithm converges to the optimum?

- Most EAs visit the global optimum in finite time (RLS does not!)
- How much time?

0000000 ocoor oooo EAs

Computational Complexity of EAs

Generally means predicting the resources the algorithm requires:

- Usually the computational time: the number of primitive steps;
- Usually grows with size of the input;
- Usually expressed in asymptotic notation;

Exponential runtime: Inefficient algorithm
Polynomial runtime: "Efficient" algorithm

Computational Complexity of EAs

However (EAs)
(1) In practice the time for a fitness function evaluation is much higher than the rest;
(2) EAs are randomised algorithms

- They do not perform the same operations even if the input is the same
- They do not output the same result if run twice!

P. K. Lehre, 2011

However (EAs):

(1) In practice the time for a fitness function evaluation is much higher than the rest;
(2) EAs are randomised algorithms

- They do not perform the same operations even if the input is the same!
- They do not output the same result if run twice!

Hence, the runtime of an EA is a random variable T_{f}.
We are interested in:
(1) Estimating $E\left(T_{f}\right)$, the expected runtime of the EA for f

However (EAs):
(1) In practice the time for a fitness function evaluation is much higher than the rest;
(2) EAs are randomised algorithms

- They do not perform the same operations even if the input is the same!
- They do not output the same result if run twice!

Hence, the runtime of an EA is a random variable T_{f}
We are interested in
(1) Estimating $E\left(T_{f}\right)$, the expected runtime of the EA for f;
(2) Estimating $p\left(T_{f} \leq t\right)$, the success probability of the EA in t steps for f.

$f(n) \in O(g(n)) \Longleftrightarrow \exists$ constants $c, n_{0}>0 \quad$ st. $\quad 0 \leq f(n) \leq c g(n) \quad \forall n \geq n_{0}$
$f(n) \in \Omega(g(n)) \Longleftrightarrow \exists$ constants $c, n_{0}>0 \quad$ st. $0 \leq c g(n) \leq f(n) \quad \forall n \geq n_{0}$
$f(n) \in \Theta(g(n)) \Longleftrightarrow f(n) \in O(g(n)) \quad$ and $\quad f(n) \in \Omega(g(n))$
$f(n) \in o(g(n)) \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$

Motivation 0000000

Evoutio Oooo

 ary AlgorithnTTiil Ineq
0000

Vels

 Drift Analysisoooooooo 0

Motivation Overview

Overview

- Goal: Analyze the correctness and performance of EAs;
- Difficulties: General purpose, randomised;
- EAs find the solution in finite time; (convergence analysis)
- How much time? \rightarrow Derive the expected runtime and the success probability;
Next
- Basic Probability Theory: probability space, random variables, expectations (expected runtime)
- Randomised Algorithm Tools: Tail inequalities (success probabilities)

Along the way

- Understand that the analysis cannot be done over all functions
- Understand why the success probability is important (expected runtime not always sufficient)

Algorithm ($(\mu+\lambda)$-EA

(1) Let $t=0$;
(2) Initialize P_{0} with μ individuals chosen uniformly at random; Repeat
(3) Create λ new individuals:
(1) choose $x \in P_{t}$ uniformly at random;
(2) flip each bit in x with probability p;
(1) Create the new population P_{t+1} by choosing the best μ individuals out of $\mu+\lambda$;
(6) Let $t=t+1$.

Until a stopping condition is fulfilled

Algorithm $((\mu+\lambda)$-EA)

(1) Let $t=0$;
(2) Initialize P_{0} with μ individuals chosen uniformly at random Repeat
(3) Create λ new individuals:
(1) choose $x \in P_{t}$ uniformly at random
(2) flip each bit in x with probability p;
(1) Create the new population P_{t+1} by choosing the best μ individuals out of $\mu+\lambda$;
(0) Let $t=t+1$.

Until a stopping condition is fulfilled.

- if $\mu=\lambda=1$ we get a $(1+1)$-EA;

Algorithm $((\mu+\lambda)$-EA
 (1) Let $t=0$;

(2) Initialize P_{0} with μ individuals chosen uniformly at random; Repeat
(3) Create λ new individuals:
(1) choose $x \in P_{t}$ uniformly at random;
(2) flip each bit in x with probability p;
(1) Create the new population P_{t+1} by choosing the best μ individuals out of $\mu+\lambda$
(0) Let $t=t+1$.

Until a stopping condition is fulfilled.

- if $\mu=\lambda=1$ we get a ($1+1$)-EA;
- $p=1 / n$ is generally considered as best choice [Bäck, 1993, Droste et al., 1998];
otivation
Evolut
Ooo

Algorithm ($(\mu+\lambda)$-EA)

(1) Let $t=0$;
(2) Initialize P_{0} with μ individuals chosen uniformly at random Repeat
(3) Create λ new individuals:
(1) choose $x \in P_{t}$ uniformly at random
(2) flip each bit in x with probability p;
(1) Create the new population P_{t+1} by choosing the best μ individuals out of $\mu+\lambda$;
(6) Let $t=t+1$.

Until a stopping condition is fulfilled.

- if $\mu=\lambda=1$ we get a $(1+1)$-EA;
- $p=1 / n$ is generally considered as best choice [Bäck, 1993, Droste et al., 1998];
- By introducing stochastic selection and crossover we obtain a Genetic Algorithm(GA)

$\begin{array}{ll}\begin{array}{ll}\text { Motivation } \\ \text { Oooooooo }\end{array} & \begin{array}{l}\text { Evolutionary Algorithms } \\ \text { oooo }\end{array}\end{array}$ Tail nequ 0000 O0000000000000000000 Conclusons Onit Analysis
 ```1+1-EA```

Algorithm ((1+1)-EA)

- Initialise P_{0} with $x \in\{1,0\}^{n}$ by flipping each bit with $p=1 / 2$;

Repeat

- Create x^{\prime} by flipping each bit in x with $p=1 / n$;
- If $f\left(x^{\prime}\right) \geq f(x)$ Then $x^{\prime} \in P_{t+1}$ Else $x \in P_{t+1}$;
- Let $t=t+1$; Until stopping condition

If only one bit is flipped per iteration: Random Local Search (RLS)
How does it work?

0000

Motivation 00000000	Evolutionary Algorithms 0000	$\begin{aligned} & \text { Tail Inequalities } \\ & 0000 \mathrm{l} \end{aligned}$	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & 0000000 \end{aligned}$
$1+1-E A$					

Algorithm (($1+1$)-EA)

- Initialise P_{0} with $x \in\{1,0\}^{n}$ by flipping each bit with $p=1 / 2$ Repeat
- Create x^{\prime} by flipping each bit in x with $p=1 / n$;
- If $f\left(x^{\prime}\right) \geq f(x)$ Then $x^{\prime} \in P_{t+1}$ Else $x \in P_{t+1}$;
- Let $t=t+1$; Until stopping condition.

If only one bit is flipped per iteration: Random Local Search (RLS).
How does it work?

- Given x, how many bits will flip in expectation?

Algorithm ((1+1)-EA)

- Initialise P_{0} with $x \in\{1,0\}^{n}$ by flipping each bit with $p=1 / 2$; Repeat
- Create x^{\prime} by flipping each bit in x with $p=1 / n$;
- If $f\left(x^{\prime}\right) \geq f(x)$ Then $x^{\prime} \in P_{t+1}$ Else $x \in P_{t+1}$;
- Let $t=t+1$; Until stopping condition.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

- Given x, how many bits will flip in expectation?

$$
E[X]=E\left[X_{1}+X_{2}+\cdots+X_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]=
$$

Algorithm ($(1+1)$-EA)

- Initialise P_{0} with $x \in\{1,0\}^{n}$ by flipping each bit with $p=1 / 2$

Repeat

- Create x^{\prime} by flipping each bit in x with $p=1 / n$;
- If $f\left(x^{\prime}\right) \geq f(x)$ Then $x^{\prime} \in P_{t+1}$ Else $x \in P_{t+1}$;
- Let $t=t+1$; Until stopping condition.

If only one bit is flipped per iteration: Random Local Search (RLS)
How does it work?

- Given x, how many bits will flip in expectation?

$$
\begin{gathered}
E[X]=E\left[X_{1}+X_{2}+\cdots+X_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]= \\
\left(E\left[X_{i}\right]=1 \cdot 1 / n+0 \cdot(1-1 / n)=1 \cdot 1 / n=1 / n \quad E(X)=n p\right)
\end{gathered}
$$

$\begin{array}{ll}\text { Motivation } \\ 0000000 & \begin{array}{l}\text { Evolutionary Algorithms } \\ \text { oooo }\end{array}\end{array}$ Tail nequ 0000 00000000000000000000 $\begin{array}{ll}\text { Drift Analysis } \\ \text { 000000000000000000 } & \begin{array}{l}\text { Conclusions } \\ \text { O.OOOOO }\end{array}\end{array}$
 $1+1$-EA

Algorithm ((1+1)-EA)

- Initialise P_{0} with $x \in\{1,0\}^{n}$ by flipping each bit with $p=1 / 2$; Repeat
- Create x^{\prime} by flipping each bit in x with $p=1 / n$;
- If $f\left(x^{\prime}\right) \geq f(x)$ Then $x^{\prime} \in P_{t+1}$ Else $x \in P_{t+1}$;
- Let $t=t+1$; Until stopping condition

If only one bit is flipped per iteration: Random Local Search (RLS).
How does it work?

- Given x, how many bits will flip in expectation?

$$
\begin{gathered}
E[X]=E\left[X_{1}+X_{2}+\cdots+X_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]= \\
\left(E\left[X_{i}\right]=1 \cdot 1 / n+0 \cdot(1-1 / n)=1 \cdot 1 / n=1 / n \quad E(X)=n p\right) \\
=\sum_{i=1}^{n} 1 \cdot 1 / n=n / n=1
\end{gathered}
$$

\bullet

How likely is it that exactly one bit flips? $\quad\left(\operatorname{Pr}(X=j)=\binom{n}{j} p^{j}(1-p)^{n-j}\right)$
How likely is it that exactly one bit flips? $\quad\left(\operatorname{Pr}(X=j)=\binom{n}{j} p^{j}(1-p)^{n-j}\right)$

- What is the probability of exactly one bit flipping?

How likely is it that exactly one bit flips? $\left(\operatorname{Pr}(X=j)=\binom{n}{j} p^{j}(1-p)^{n-j}\right)$

- What is the probability of exactly one bit flipping?

$$
\operatorname{Pr}(X=1)=\binom{n}{1} \cdot 1 / n \cdot(1-1 / n)^{n-1}=(1-1 / n)^{n-1} \geq 1 / e \approx 0.37
$$

Motivation

How likely is it that exactly one bit flips? $\left(\operatorname{Pr}(X=j)=\binom{n}{j} p^{j}(1-p)^{n-j}\right)$

- What is the probability of exactly one bit flipping?

$$
\operatorname{Pr}(X=1)=\binom{n}{1} \cdot 1 / n \cdot(1-1 / n)^{n-1}=(1-1 / n)^{n-1} \geq 1 / e \approx 0.37
$$

Is it more likely that $\mathbf{2}$ bits flip or none?

How likely is it that exactly one bit flips? $\left(\operatorname{Pr}(X=j)=\binom{n}{j} p^{j}(1-p)^{n-j}\right)$

- What is the probability of exactly one bit flipping?

$$
\operatorname{Pr}(X=1)=\binom{n}{1} \cdot 1 / n \cdot(1-1 / n)^{n-1}=(1-1 / n)^{n-1} \geq 1 / e \approx 0.37
$$

Is it more likely that $\mathbf{2}$ bits flip or none?

$$
\begin{gathered}
\operatorname{Pr}(X=2)=\binom{n}{2} \cdot 1 / n^{2} \cdot(1-1 / n)^{n-2}= \\
=\frac{n \cdot(n-1)}{2} 1 / n^{2} \cdot(1-1 / n)^{n-2}= \\
=1 / 2 \cdot(1-1 / n)^{n-1} \approx 1 /(2 e)
\end{gathered}
$$

$1+1$-EA: 2

How likely is it that exactly one bit flips? $\quad\left(\operatorname{Pr}(X=j)=\binom{n}{j} p^{j}(1-p)^{n-j}\right)$

- What is the probability of exactly one bit flipping?

$$
\operatorname{Pr}(X=1)=\binom{n}{1} \cdot 1 / n \cdot(1-1 / n)^{n-1}=(1-1 / n)^{n-1} \geq 1 / e \approx 0.37
$$

Is it more likely that $\mathbf{2}$ bits flip or none?

$$
\begin{gathered}
\operatorname{Pr}(X=2)=\binom{n}{2} \cdot 1 / n^{2} \cdot(1-1 / n)^{n-2}= \\
=\frac{n \cdot(n-1)}{2} 1 / n^{2} \cdot(1-1 / n)^{n-2}= \\
\quad=1 / 2 \cdot(1-1 / n)^{n-1} \approx 1 /(2 e)
\end{gathered}
$$

While

$$
\operatorname{Pr}(X=0)=\binom{n}{0}(1 / n)^{0} \cdot(1-1 / n)^{n} \approx 1 / e
$$

Motivation 00000000	Evolutionary Algorithms ocoo	Tail Inequalities oooo	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	Conclusions 0000000
General upper bound					
1+1-EA: General Upper bound					

Theorem ([Droste et al., 2002])

The expected runtime of the (1+1)-EA for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(n^{n}\right)$

Theorem ([Droste et al., 2002])

The expected runtime of the (1+1)-EA for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(n^{n}\right)$

Proof

Theorem ([Droste et al., 2002])

The expected runtime of the (1+1)-EA for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(n^{n}\right)$

Proof

(1) Let i be the number of bit positions in which the current solution x and the global optimum x^{*} differ

Theorem ([Droste et al., 2002])
The expected runtime of the (1+1)-EA for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(n^{n}\right)$

Proof

(1) Let i be the number of bit positions in which the current solution x and the global optimum x^{*} differ;
(2) Each bit flips with probability $1 / n$, hence does not flip with probability $(1-1 / n)$;

Motivation OOOOOOO	Evolutionary Algorithms octoo	Tail Inequalitics oooo	Artificial Fitness Levels 0000000000000000000	Drift Analysis 00000000000000000	Conclusions 0000000
General upper bound					
1+1-EA: General Upper bound					

Theorem ([Droste et al., 2002])

The expected runtime of the (1+1)-EA for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(n^{n}\right)$

Proof

(1) Let i be the number of bit positions in which the current solution x and the global optimum x^{*} differ
(2) Each bit flips with probability $1 / n$, hence does not flip with probability $(1-1 / n)$;
(3) In order to reach the global optimum the algorithm has to mutate the i bits and leave the $n-i$ bits unchanged;

Theorem ([Droste et al., 2002])

The expected runtime of the (1+1)-EA for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(n^{n}\right)$

Proof

(1) Let i be the number of bit positions in which the current solution x and the global optimum x^{*} differ;
(2) Each bit flips with probability $1 / n$, hence does not flip with probability $(1-1 / n)$;
(3) In order to reach the global optimum the algorithm has to mutate the i bits and leave the $n-i$ bits unchanged;
(9) Then

$$
p\left(x^{*} \mid x\right)=\left(\frac{1}{n}\right)^{i}\left(1-\frac{1}{n}\right)^{n-i} \geq\left(\frac{1}{n}\right)^{n}=n^{-n}\left(p=n^{-n}\right)
$$

Theorem ([Droste et al., 2002])

The expected runtime of the (1+1)-EA for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(n^{n}\right)$

Proof

(1) Let i be the number of bit positions in which the current solution x and the global optimum x^{*} differ;
(2) Each bit flips with probability $1 / n$, hence does not flip with probability $(1-1 / n)$;
(3) In order to reach the global optimum the algorithm has to mutate the bits and leave the $n-i$ bits unchanged;
(9) Then:

$$
p\left(x^{*} \mid x\right)=\left(\frac{1}{n}\right)^{i}\left(1-\frac{1}{n}\right)^{n-i} \geq\left(\frac{1}{n}\right)^{n}=n^{-n}\left(p=n^{-n}\right)
$$

(3) it implies an upper bound on the expected runtime of $O\left(n^{n}\right)$ $\left(E(X)=1 / p=n^{n}\right)$ (waiting time argument).

Motivation $\begin{aligned} & \text { Evc } \\ & \text { Oooooooo } \\ & \text { General upper bound }\end{aligned}$

Theorem

The expected runtime of the $(1+1)-E A$ with mutation probability $p=1 / 2$ for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(2^{n}\right)$

Proof Left as Exercise.

Theorem

The expected runtime of the $(1+1)-E A$ with mutation probability $p=\chi / n$ for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left((n / \chi)^{n}\right)$

Motivation 00000000	Evolutionary Algorithms ○○○	Tail Inequalities oooo	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	Conclusions oooooooo
General upper b					
General Upper bound Exercises					

Theorem
 The expected runtime of the $(1+1)-E A$ with mutation probability $p=1 / 2$ for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(2^{n}\right)$

Proof Left as Exercise

Theorem

The expected runtime of the $(1+1)-E A$ with mutation probability $p=\chi / n$ for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left((n / \chi)^{n}\right)$

Proof Left as Exercise.

Theorem

The expected runtime of RLS for an arbitrary function defined in $\{0,1\}^{n}$ is infinite.

Theorem

The expected runtime of the $(1+1)-E A$ with mutation probability $p=1 / 2$ for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left(2^{n}\right)$

Proof Left as Exercise.

Theorem

The expected runtime of the $(1+1)-E A$ with mutation probability $p=\chi / n$ for an arbitrary function defined in $\{0,1\}^{n}$ is $O\left((n / \chi)^{n}\right)$

Proof Left as Exercise.

Theorem

The expected runtime of RLS for an arbitrary function defined in $\{0,1\}^{n}$ is infinite

Proof Left as Exercise.

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

What about RLS?

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

$\begin{array}{ll}\text { Motivation } \\ \text { Oooooooos } & \begin{array}{l}\text { Evolutionary Algorithms } \\ \text { ooo. }\end{array}\end{array}$	Tail Inequalities 0000	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	Conclusions 0000000
General upper bound				
1+1-EA: Conclusions \& Exercises				

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

What about RLS?

- Expectation: $\mathrm{E}[\mathrm{X}]=1$

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

What about RLS?

- Expectation: $\mathrm{E}[\mathrm{X}]=1$
- $\mathrm{P}(1$-bitflip $)=1$

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

What about RLS?

- Expectation: $\mathrm{E}[\mathrm{X}]=1$
- $\mathrm{P}(1$-bitflip $)=1$

What about initialisation?

Motivation $\begin{aligned} & \text { Evolutionary Algorithms } \\ & \text { Oocooooo } \\ & \text { General upper bound }\end{aligned}$
1+1-EA: Conclusions \& Exercises

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

What about RLS?

- Expectation: $\mathrm{E}[\mathrm{X}]=1$
- $\mathrm{P}(1$-bitflip $)=1$

What about initialisation?

- How many one-bits in expectation after initialisation?

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

What about RLS?

- Expectation: $\mathrm{E}[\mathrm{X}]=1$
- $\mathrm{P}(1$-bitflip $)=1$

What about initialisation?

- How many one-bits in expectation after initialisation?

$$
E[X]=n \cdot 1 / 2=n / 2
$$

How likely is it that we get exactly $n / 2$ one-bits?

In general:

$$
P(i-\text { bitflip })=\binom{n}{i} \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{n-i} \leq \frac{1}{i!}\left(1-\frac{1}{n}\right)^{n-i} \approx \frac{1}{i!e}
$$

What about RLS?

- Expectation: $\mathrm{E}[\mathrm{X}]=1$
- $P(1$-bitflip $)=1$

What about initialisation?

- How many one-bits in expectation after initialisation?

$$
E[X]=n \cdot 1 / 2=n / 2
$$

How likely is it that we get exactly $n / 2$ one-bits?
$\operatorname{Pr}(X=n / 2)=\binom{n}{n / 2} \frac{1}{n^{n / 2}}\left(1-\frac{1}{n}\right)^{n / 2}(n=100, \operatorname{Pr}(X=50) \approx 0.0796)$
Tail Inequalities help us!

Given a random variable X it may assume values that are considerably larger or lower than its expectation;

Tail inequalities:

- The expectation can often be estimate easily;
- We would like to know the probability of deviating far from the expectation i.e., the "tails" of the distribution
- Tail inequalities give bounds on the tails given the expectation.

The fundamental inequality from which many others are derived

MotivationEvolutionary Algorithm Oooooo. Markov's inequality oooo	$\begin{aligned} & \text { Tail Inequalities } \\ & \bullet 000 \end{aligned}$	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & \text { ooooooo } \end{aligned}$
Markov Inequality				

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)

Let X be a random variable assuming only non-negative values, and $E[X]$ its expectation. Then for all $t \in R^{+}$,

$$
\operatorname{Pr}[X \geq t] \leq \frac{E[X]}{t}
$$

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)
Let X be a random variable assuming only non-negative values, and $E[X]$ its expectation. Then for all $t \in R^{+}$

$$
\operatorname{Pr}[X \geq t] \leq \frac{E[X]}{t}
$$

- $E[X]=1$; then: $\operatorname{Pr}[X \geq 2] \leq \frac{E[X]}{2} \leq \frac{1}{2}$ (Number of bits that flip)
 $\stackrel{\text { TTill II }}{\bullet \rightarrow 0}$ Inequalities Arfificial Fitness Lev
oonoonoon 00000000

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)

Let X be a random variable assuming only non-negative values, and $E[X]$ its expectation. Then for all $t \in R^{+}$,

$$
\operatorname{Pr}[X \geq t] \leq \frac{E[X]}{t}
$$

- $E[X]=1$; then: $\operatorname{Pr}[X \geq 2] \leq \frac{E[X]}{2} \leq \frac{1}{2}$ (Number of bits that flip)
- $E[X]=n / 2$; then $\operatorname{Pr}[X \geq(2 / 3) n] \leq \frac{E[X]}{(2 / 3) n}=\frac{n / 2}{(2 / 3) n}=\frac{3}{4}$

(Number of one-bits after initialisation)

Markov's inequality is often used iteratively in repeated phases to obtain stronger bounds!

The fundamental inequality from which many others are derived.

Definition (Markov's Inequality)

Let X be a random variable assuming only non-negative values, and $E[X]$ its expectation. Then for all $t \in R^{+}$

$$
\operatorname{Pr}[X \geq t] \leq \frac{E[X]}{t}
$$

- $E[X]=1$; then: $\operatorname{Pr}[X \geq 2] \leq \frac{E[X]}{2} \leq \frac{1}{2}$ (Number of bits that flip)
- $E[X]=n / 2$; then $\operatorname{Pr}[X \geq(2 / 3) n] \leq \frac{E[X]}{(2 / 3) n}=\frac{n / 2}{(2 / 3) n}=\frac{3}{4}$
(Number of one-bits after initialisation)

Motivation 00000000	Evolutionary Algorithms 0000	Tail Inequalities $0 \bullet 00$	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & \text { oooooooo } \end{aligned}$
Chernoff bounds					
Chernoff Bounds					

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent Poisson trials each with probability p_{i}; For $X=\sum_{i=1}^{n} X_{i}$ the expectation is $E(X)=\sum_{i=1}^{n} p_{i}$.

Definition (Chernoff Bounds)

(1) for $0 \leq \delta \leq 1, \operatorname{Pr}(X \leq(1-\delta) E[X]) \leq e^{\frac{-E[X] \delta^{2}}{2}}$
(2) for $\delta>0, \operatorname{Pr}(X>(1+\delta) E[X]) \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{E[X]}$.

Ooooooooo
Chernoff bounds

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent Poisson trials each with probability p_{i} For $X=\sum_{i=1}^{n} X_{i}$ the expectation is $E(X)=\sum_{i=1}^{n} p_{i}$

Definition (Chernoff Bounds)

(1) for $0 \leq \delta \leq 1, \operatorname{Pr}(X \leq(1-\delta) E[X]) \leq e^{\frac{-E[X] \delta^{2}}{2}}$
(2) for $\delta>0, \operatorname{Pr}(X>(1+\delta) E[X]) \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{E[X]}$

What is the probability that we have more than $(2 / 3) n$ one-bits at initialisation?

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent Poisson trials each with probability p_{i};
For $X=\sum_{i=1}^{n} X_{i}$ the expectation is $E(X)=\sum_{i=1}^{n} p_{i}$.
Definition (Chernoff Bounds)
(1) for $0 \leq \delta \leq 1, \operatorname{Pr}(X \leq(1-\delta) E[X]) \leq e^{\frac{-E[X] \delta^{2}}{2}}$.
(2) for $\delta>0, \operatorname{Pr}(X>(1+\delta) E[X]) \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{E[X]}$

What is the probability that we have more than $(2 / 3) n$ one-bits at initialisation?

- $p_{i}=1 / 2, E[X]=n \cdot 1 / 2=n / 2$,

$\begin{aligned} & \text { Motivation } \\ & \text { oooooooo } \end{aligned}$	Evolutionary Algorithms 0000	Tail lnequalities oọ	Artificial Fitness Levels 000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & \text { oooocooo } \end{aligned}$
Chernoff bounds					
Chernoff Bound Simple Application					

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent Poisson trials each with probability p_{i}
For $X=\sum_{i=1}^{n} X_{i}$ the expectation is $E(X)=\sum_{i=1}^{n} p_{i}$.

Definition (Chernoff Bounds)

(1) for $0 \leq \delta \leq 1, \operatorname{Pr}(X \leq(1-\delta) E[X]) \leq e^{\frac{-E[X] \delta^{2}}{2}}$.
(2) for $\delta>0, \operatorname{Pr}(X>(1+\delta) E[X]) \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{E[X]}$.

Bitstring of length $n=100$
$\operatorname{Pr}\left(X_{i}\right)=1 / 2$ and $E(X)=n p=100 / 2=50$.

What is the probability that we have more than $(2 / 3) n$ one-bits at initialisation?

- $p_{i}=1 / 2, E[X]=n \cdot 1 / 2=n / 2$,
(we fix $\delta=1 / 3 \rightarrow(1+\delta) E[X]=(2 / 3) n$); then:
- $\operatorname{Pr}[X>(2 / 3) n] \leq\left(\frac{e^{1 / 3}}{(4 / 3)^{4 / 3}}\right)^{n / 2}=c^{-n / 2}$

Bitstring of length $n=100$
$\operatorname{Pr}\left(X_{i}\right)=1 / 2$ and $E(X)=n p=100 / 2=50$.
What is the probability to have at least 75 1-bits?

Bitstring of length $n=100$
$\operatorname{Pr}\left(X_{i}\right)=1 / 2$ and $E(X)=n p=100 / 2=50$
What is the probability to have at least 75 1-bits?

- Markov: $\operatorname{Pr}(X \geq 75) \leq \frac{50}{75}=\frac{2}{3}$
- Chernoff: $\operatorname{Pr}(X \geq(1+1 / 2) 50) \leq\left(\frac{\sqrt{e}}{(3 / 2)^{3 / 2}}\right)^{50}<0.0045$
- Truth: $\operatorname{Pr}(X \geq 75)=\sum_{i=75}^{100}\binom{100}{i} 2^{-100}<0.000000282$

Motivation
OOOOOOOO
Evolut
000 oo Tail neq
ooo. Artiin
000 00000000 Levels Drit Analys $\begin{array}{ll}\text { Analysis } \\ 00000000000000 & \begin{array}{l}\text { Conclusions } \\ \text { oobocoun }\end{array} \\ & \end{array}$ OneMax
$\left.\operatorname{OnEMAx}(x)=\sum_{i=1}^{n} x[i]\right)$
 0^{1} 0000

RLS for $\operatorname{OneMax}\left(\operatorname{OneMax}(x)=\sum_{i=1}^{n} x[i]\right)$

0	0	0	0	0	0

$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

| 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 |

$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$

RLS for $\operatorname{OneMAx}\left(\operatorname{OneMax}(x)=\sum_{i=1}^{n} x[i]\right)$

0	0	0	0	0	1

0	1	2	3	4	5	
0	0	1	1	0	0	0
0	1	2	3	4	5	

$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$
$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$

RLS for $\operatorname{OneMax}\left(\operatorname{OneMax}(x)=\sum_{i=1}^{n} x[i]\right)$

0	0	0	0	0

$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$

0	0	1	0	0	1

${ }^{5}$

| 0 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 |

$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$

RLS for $\operatorname{OneMax}\left(\operatorname{OneMax}(x)=\sum_{i=1}^{n} x[i]\right)$

0	0	0	0	0	1
0	1	2	3	4	5
0	0	1	0	0	0
0	1	2	3	4	5
1	0	1	0	0	1
0	1	2	3	4	5
1	0	1	0	0	1
0	1	2	3	4	5

$$
\begin{array}{ll}
p_{0}=\frac{6}{6} & E\left(T_{0}\right)=\frac{6}{6} \\
p_{1}=\frac{5}{6} & E\left(T_{1}\right)=\frac{6}{5} \\
p_{2}=\frac{4}{6} & E\left(T_{2}\right)=\frac{6}{4} \\
p_{2}=\frac{4}{6} & E\left(T_{2}\right)=\frac{6}{4}
\end{array}
$$

RLS for Onemax (OneMax $\left.(x)=\sum_{i=1}^{n} x[i]\right)$

0	0	0	0	0	1
0	1	2	3	4	5

$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$

0	0	1	0	0	1

$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

1	0	1	0	0	1
0	1	2	3	4	5

$p_{2}=\frac{4}{6} \quad E\left(T_{2}\right)=\frac{6}{4}$

1	0	1	0	0	0	1
0	1	2	3	4	5	

$p_{3}=\frac{3}{6} \quad E\left(T_{0}\right)=\frac{6}{3}$

Motivation 00000000	Evolutionary Algorithms 0000	Tail Inequalities 0000	Artificial Fitness Levels 0000000000000000000	Driff Oood	lysis 0000000000000
RLS for Onemax (OneMax $\left.(x)=\sum_{i=1}^{n} x[i]\right)$					
	0 0 0	0 1		$p_{0}=\frac{6}{6}$	$E\left(T_{0}\right)=\frac{6}{6}$
	0112	45			
	0 0 1			$p_{1}=\frac{5}{6}$	$E\left(T_{1}\right)=\frac{6}{5}$
	0 1 12	45			
	1 0 1	0 1		$p_{2}=\frac{4}{6}$	$E\left(T_{2}\right)=\frac{6}{4}$
	0	45			
	1 0 1	0 0		$p_{3}=\frac{3}{6}$	$E\left(T_{3}\right)=\frac{6}{3}$
	$\begin{array}{llll}0 & 1\end{array}$	45			

Motivation 00000000	Evolutionary Algorithms 0000	Tail Inequalities oooo	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	Conclusions 000000
RLS for Onemax($\left.\operatorname{OnEMAx}(x)=\sum_{i=1}^{n} x[i]\right)$					

| 0 | 0 | 0 | 0 | 0 | 1 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | | $p_{0}=\frac{6}{6}$ | $E\left(T_{0}\right)=\frac{6}{6}$ | |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | |
| 0 | 1 | 2 | 3 | 4 | 5 | $p_{1}=\frac{5}{6}$ | $E\left(T_{1}\right)=\frac{6}{5}$ | | |
| 1 | 0 | 1 | 0 | 0 | 1 | | $p_{2}=\frac{4}{6}$ | $E\left(T_{2}\right)=\frac{6}{4}$ | |
| 0 | 1 | 2 | 3 | 4 | 5 | | | | |
| 1 | 0 | 1 | 0 | 0 | 1 | $p_{2}=\frac{4}{6}$ | $E\left(T_{2}\right)=\frac{6}{4}$ | | |
| 0 | 1 | 2 | 3 | 4 | 5 | | | | |

RLS for $\operatorname{OneMax}\left(\operatorname{OneMax}(x)=\sum_{i=1}^{n} x[i]\right)$
000001
$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$
000001
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

1	0	$\boxed{1}$	0	0	0	1
0	1	2	3	4	5	

$p_{2}=\frac{4}{6} \quad E\left(T_{2}\right)=\frac{6}{4}$

$p_{3}=\frac{3}{6} \quad E\left(T_{3}\right)=\frac{6}{3}$

000001	$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$	
(0) 0110001	$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$	
(1) 01001	$p_{2}=\frac{4}{6} \quad E\left(T_{2}\right)=\frac{6}{4}$
$\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$	
(1) 01011	$p_{3}=\frac{3}{6} \quad E\left(T_{3}\right)=\frac{6}{3}$
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$	
(1) 01001	$p_{4}=\frac{2}{6} \quad E\left(T_{4}\right)=\frac{6}{2}$
$\begin{array}{llllll}1 & 2 & 3 & 4\end{array}$	

0	0	0	0	0	1

$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$

0	0	1	0	0	1

$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

1	0	1	0	0	1
0	1	2	3	4	5

$p_{2}=\frac{4}{6} \quad E\left(T_{2}\right)=\frac{6}{4}$

| 1 | 0 | 1 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 |

$p_{3}=\frac{3}{6} \quad E\left(T_{3}\right)=\frac{6}{3}$

| 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | |

$p_{4}=\frac{2}{6} \quad E\left(T_{4}\right)=\frac{6}{2}$

1	1	1	0	1	1
0	1	2	3	4	5

$p_{4}=\frac{2}{6} \quad E\left(T_{4}\right)=\frac{6}{2}$

Motivation 00000000	Evolutionary Algorithms 0000	Tail Inequalities oooo	Artificial Fitness Levels 0000000000000000000	Difit Ar Ooool	alysis 00000000000000	Conclusions 0000000
RLS for OneMax ($\left.\operatorname{OnEMax}(x)=\sum_{i=1}^{n} x[i]\right)$						
0 0 1 0 0 1 $p_{1}=\frac{5}{6}$ $E\left(T_{1}\right)=$						
$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$						
$1 \begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & p_{2}=\frac{4}{6} & E\left(T_{2}\right)=\frac{6}{4}\end{array}$						
1 0 1 1 0 1 1 $\mid c$$\quad \begin{aligned} & \text { a }\end{aligned}$						
$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$						
$\begin{array}{lcccccc\|c\|c} \hline 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & p_{5}=\frac{1}{6} \quad E\left(T_{5}\right)=\frac{6}{1} \\ \hline 0 & 1 & 2 & 3 & 4 & 5 & \end{array}$						

Motivation 00000000	Evolutionary Algorithms 0000	Tail Inequalities OOOO	Artificial Fitness Levels 0000000000000000000	Drift Analysis -000000000000000000	Conclusions 0000000
RLS for Onemax ($\left.\operatorname{OnEMAx}(x)=\sum_{i=1}^{n} x[i]\right)$					

0	0	0	0	0	1	$p_{0}=\frac{6}{6}$	$E\left(T_{0}\right)=\frac{6}{6}$
0	1	2	3	4	5		
0	0	1	0	0	1	$p_{1}=\frac{5}{6}$	$E\left(T_{1}\right)=\frac{6}{5}$
0	1	2	3	4	5		
1	0	1	0	0	1	$p_{2}=\frac{4}{6}$	$E\left(T_{2}\right)=\frac{6}{4}$
0	1	2	3	4	5		
1	0	1	0	1	1	$p_{3}=\frac{3}{6}$	$E\left(T_{3}\right)=\frac{6}{3}$
0	1	2	3	4	5		
1	1	1	0	1	1	$p_{4}=\frac{2}{6}$	$E\left(T_{4}\right)=\frac{6}{2}$
0	1	2	3	4	5		
1	1	1	1	1	1	$p_{5}=\frac{1}{6}$	$E\left(T_{5}\right)=\frac{6}{1}$
0	1	2	3	4	5		

0	0	0	0	0

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

0	0	1	0	0	1

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

1	0	$\boxed{1}$	0	0	1 0 1 2 3
4	5				

1	0	1	0	1	1 0 1
2	3	4	5		

1	1	1	1	0	1	1 0
	1	2	3	4	5	

1	1	1	1	1	1
0	1	2	3	4	5

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$p_{0}=\frac{6}{6} \quad E\left(T_{0}\right)=\frac{6}{6}$
$p_{1}=\frac{5}{6} \quad E\left(T_{1}\right)=\frac{6}{5}$
$p_{2}=\frac{4}{6} \quad E\left(T_{2}\right)=\frac{6}{4}$
$p_{3}=\frac{3}{6} \quad E\left(T_{3}\right)=\frac{6}{3}$
$p_{4}=\frac{2}{6} \quad E\left(T_{4}\right)=\frac{6}{2}$
$p_{5}=\frac{1}{6} \quad E\left(T_{5}\right)=\frac{6}{1}$
$E(T)=E\left(T_{0}\right)+E\left(T_{1}\right)+\cdots+E\left(T_{5}\right)=1 / p_{0}+1 / p_{1}+\cdots+1 / p_{5}=$

$$
=\sum_{i=0}^{5} \frac{1}{p_{i}}=\sum_{i=0}^{5} \frac{6}{i}=6 \sum_{i=1}^{6} \frac{1}{i}=6 \cdot 2.45=14.7
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|lll}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{0}=\frac{n}{n} & E\left(T_{0}\right)=\frac{n}{n} \\
& 1 & 2 & 3 & & 5 & 0 & & n & n &
\end{array}
$$

RLS for Onemax (OneMax $\left.(x)=\sum_{i=1}^{n} x[i]\right)$: Generalisation

$$
\begin{aligned}
& \begin{array}{llllllllll|l|l|l|l|l}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & p_{0}=\frac{n}{n} & E\left(T_{0}\right)=\frac{n}{n} \\
\hline 0 & 1 & 2 & 3 & & & 0 &
\end{array} \\
& \begin{array}{llllllllll|l|lllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & p_{0}=\frac{n}{n} & E\left(T_{0}\right)=\frac{n}{n}
\end{array}
\end{aligned}
$$ 0000

RLS for $\operatorname{OnEMAx}\left(\operatorname{OneMax}(x)=\sum_{i=1}^{n} x[i]\right)$: Generalisation

0	0	0	0	0	1	0	0	0	0	$p_{1}=\frac{n-1}{n}$	$E\left(T_{1}\right)=\frac{n}{n-1}$
0	1	2	3								
n											

RLS for $\operatorname{OneMax}\left(\operatorname{OneMax}(x)=\sum_{i=1}^{n} x[i]\right)$: Generalisation

0	0	1	0	0	1	0	0	0	0	$p_{1}=\frac{n-1}{n}$	$E\left(T_{1}\right)=\frac{n}{n-1}$
0	1	2	3						n		

RLS for Onemax (OneMax $\left.(x)=\sum_{i=1}^{n} x[i]\right)$: Generalisation

| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | $p_{0}=\frac{n}{n}$ | $E\left(T_{0}\right)=\frac{n}{n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | | | | | | n | | | |

0	0	0	0	0	1	0	0	0	0	$p_{0}=\frac{n}{n}$	$E\left(T_{0}\right)=\frac{n}{n}$
0	1	2	3						n		
0	0	1	0	0	1	0	0	0	0	$p_{1}=\frac{n-1}{n}$	$E\left(T_{1}\right)=\frac{n}{n-1}$
0	1	2	3						n		
0	0	1	0	0	1	0	0	0	1	$p_{2}=\frac{n-2}{n}$	$E\left(T_{2}\right)=\frac{n}{n-2}$
0	1	2	3						n		

Motivation Evolutionary AIgorthms Tail nequarities Artificial Fitness Levels

RLS for $\operatorname{OneMax}\left(\operatorname{OnEMAx}(x)=\sum_{i=1}^{n} x[i]\right)$: Generalisation

$p_{0}=\frac{n}{n} \quad E\left(T_{0}\right)=\frac{n}{n}$

RLS for Onemax (Onemax $\left.(x)=\sum_{i=1}^{n} x[i]\right)$: Generalisation

0	0	0	0	0	1	0	0	0	0	$p_{0}=\frac{n}{n}$	$E\left(T_{0}\right)=\frac{n}{n}$
0	1	2	3						n		
0	0	1	0	0	1	0	0	0	0	$p_{1}=\frac{n-1}{n}$	$E\left(T_{1}\right)=\frac{n}{n-1}$
0	1	2	3						n		
0	0	1	0	0	1	0	0	0	1	$p_{2}=\frac{n-2}{n}$	$E\left(T_{2}\right)=\frac{n}{n-2}$
0	1	2	3						n		

RLS for OnEMax(OneMax $\left.(x)=\sum_{i=1}^{n} x[i]\right)$: Generalisation

0	0	0	0	0	1	0	0	0	0	$p_{0}=\frac{n}{n}$	$E\left(T_{0}\right)=\frac{n}{n}$
0	1	2	3						n		
0	0	1	0	0	1	0	0	0	0	$p_{1}=\frac{n-1}{n}$	$E\left(T_{1}\right)=\frac{n}{n-1}$
0	1	2	3						n		
0	0	1	0	0	1	0	0	0	1	$p_{2}=\frac{n-2}{n}$	$E\left(T_{2}\right)=\frac{n}{n-2}$
0	1	2	3						n		

$$
\begin{aligned}
& E(T)=E\left(T_{0}\right)+E\left(T_{1}\right)+\cdots+E\left(T_{n-1}\right)=1 / p_{1}+1 / p_{2}+\cdots+1 / p_{n-1}= \\
& =\sum_{i=0}^{n-1} \frac{1}{p_{i}}=\sum_{i=1}^{n} \frac{n}{i}=n \sum_{i=1}^{n} \frac{1}{i}=n \cdot H(n)=n \log n+\Theta(n)=O(n \log n)
\end{aligned}
$$

Coupon collector's problem: Upper bound on time

What is the probability that the time to collect n coupons is greater than $n \ln n+O(n)$?

Theorem (Coupon collector upper bound on time)
Let T be the time for all the n coupons to be collected. Then

$$
\operatorname{Pr}(T \geq(1+\epsilon) n \ln n) \leq n^{-\epsilon}
$$

Proof

Coupon collector's problem: Upper bound on time

What is the probability that the time to collect n coupons is greater than $n \ln n+O(n)$?

Theorem (Coupon collector upper bound on time)

Let T be the time for all the n coupons to be collected. Then

$$
\operatorname{Pr}(T \geq(1+\epsilon) n \ln n) \leq n^{-\epsilon}
$$

Proof
$\frac{1}{n} \quad$ Probability of choosing a given coupon
$-\frac{1}{n} \quad$ Probability of not choosing a given coupon
$\left(1-\frac{1}{n}\right)^{t} \quad$ Probability of not choosing a given coupon for t rounds
The probability that one of the n coupons is not chosen in t rounds is less than
$n \cdot\left(1-\frac{1}{n}\right)^{t} \quad$ (Union Bound)
Hence, for $t=c n \ln n$

$$
\operatorname{Pr}(T \geq c n \ln n) \leq n(1-1 / n)^{c n \ln n} \leq n \cdot e^{-c \ln n}=n \cdot n^{-c}=n^{-c+1}
$$

Coupon collector's problem: lower bound on time

What is the probability that the time to collect n coupons is less than $n \ln n+O(n)$?

Theorem (Coupon collector lower bound on time (Doerr, 2011))

Let T be the time for all the n coupons to be collected. Then for all $\epsilon>0$

$$
\operatorname{Pr}(T<(1-\epsilon)(n-1) \ln n) \leq \exp \left(-n^{\epsilon}\right)
$$

Corollary

The expected time for RLS to optimise OnEMAxis $\Theta(n \ln n)$. Furthermore,

$$
\operatorname{Pr}(T \geq(1+\epsilon) n \ln n) \leq n^{-\epsilon}
$$

and

$$
\operatorname{Pr}(T<(1-\epsilon)(n-1) \ln n) \leq \exp \left(-n^{\epsilon}\right)
$$

What about the ($1+1$)-EA?

$\begin{aligned} & \text { Motivation } \\ & \text { ooooooooo } \end{aligned}$	Evolutionary Algorithms 0000	$\begin{aligned} & \text { Tail Inequalities } \\ & \text { oooc } \end{aligned}$	Artificial Fitness Levels $000 \bullet 00000000000000$	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & 0000000 \end{aligned}$
AFL method for upper bounds					

Observation Due to elitism, fitness is monotone increasing
What is the probability that the time to collect n coupons is less than $n \ln n+O(n)$?

Theorem (Coupon collector lower bound on time (Doerr, 2011))

Let T be the time for all the n coupons to be collected. Then for all $\epsilon>0$

$$
\operatorname{Pr}(T<(1-\epsilon)(n-1) \ln n) \leq \exp \left(-n^{\epsilon}\right)
$$

Artificial Fitness Levels

Observation
Due to elitism, fitness is monotone increasing

D. Sudholt, Tutorial 2011

Idea
Divide the search space $|S|=2^{n}$ into $m<2^{n}$ sets $A_{1}, \ldots A_{m}$ such
that:
(1) $\forall i \neq j: \quad A_{i} \cap A_{j}=\emptyset$
(2) $\bigcup_{i=0}^{m} A_{i}=\{0,1\}^{n}$
(3) for all points $a \in A_{i}$ and $b \in A_{j}$ it happens that $f(a)<f(b)$ if $i<j$
requirement $\quad A_{m}$ contains only optimal search points

```
Motvation
Idea Divide the search space \(|S|=2^{n}\) into \(m<2^{n}\) sets \(A_{1}, \ldots A_{m}\) such
that:
(1) \(\forall i \neq j: \quad A_{i} \cap A_{j}=\emptyset\)
(2) \(\bigcup_{i=0}^{m} A_{i}=\{0,1\}^{n}\)
(3) for all points \(a \in A_{i}\) and \(b \in A_{j}\) it happens that \(f(a)<f(b)\) if \(i<j\)
```


requirement $\quad A_{m}$ contains only optimal search points.

Then:

s_{i} probability that point in A_{i} is mutated to a point in A_{j} with $j>i$
Expected time: $E(T) \leq \sum_{i} \frac{1}{s_{i}}$
Very simple, yet often powerful method for upper bounds

Idea Divide the search space $|S|=2^{n}$ into $m<2^{n}$ sets $A_{1}, \ldots A_{m}$ such that:
(1) $\forall i \neq j: \quad A_{i} \cap A_{j}=\emptyset$
(2) $\bigcup_{i=0}^{m} A_{i}=\{0,1\}^{n}$
(3) for all points $a \in A_{i}$ and $b \in A_{j}$ it happens that $f(a)<f(b)$ if $i<j$.
requirement $\quad A_{m}$ contains only optimal search points.

Artificial Fitness Levels

Let:

- $p\left(A_{i}\right)$ be the probability that a random initial point belongs to level A_{i}
- s_{i} be the probability to leave level A_{i} for A_{j} with $j>i$
- Then:
$E(T) \leq \sum_{1 \leq i \leq m-1} p\left(A_{i}\right) \cdot\left(\frac{1}{s_{i}}+\cdots+\frac{1}{s_{m-1}}\right) \leq\left(\frac{1}{s_{1}}+\cdots+\frac{1}{s_{m-1}}\right)=\sum_{i=1}^{m-1} \frac{1}{s_{i}}$
- Inequality 1: Law of total probability $\left(E(T)=\sum_{i} \operatorname{Pr}(F) \cdot E(T \mid F)\right.$
- Inequality 2: Trivial!

$(1+1)$-EA for OneMAX

Theorem

The expected runtime of the (1+1)-EA for OnEMAxis $O(n \ln n)$
The expected runtime of the $(1+1)$-EA for OnEMAxis $O(n \ln n)$.
Proof
Proof

- The current solution is in level A_{i} if it has i zeroes (hence $n-i$ ones)

Theorem

The expected runtime of the (1+1)-EA for OnEMAxis $O(n \ln n)$.
Proof

- The current solution is in level A_{i} if it has i zeroes (hence $n-i$ ones)
- To reach a higher fitness level it is sufficient to flip a zero into a one and leave the other bits unchanged, which occurs with probability

$$
s_{i} \geq i \cdot \frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{i}{e n}
$$

Theorem

The expected runtime of the $(1+1)-E A$ for OnEMAX is $O(n \ln n)$.

Proof

- The current solution is in level A_{i} if it has i zeroes (hence $n-i$ ones)
- To reach a higher fitness level it is sufficient to flip a zero into a one and leave the other bits unchanged, which occurs with probability

$$
s_{i} \geq i \cdot \frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{i}{e n}
$$

Then (Artificial Fitness Levels):

$$
E(T) \leq \sum_{i=1}^{m-1} s_{i}^{-1} \leq \sum_{i=1}^{n} \frac{e n}{i} \leq e \cdot n \sum_{i=1}^{m-1} \frac{1}{i} \leq e \cdot n \cdot(\ln n+1)=O(n \ln n)
$$

Is the $(1+1)$-EA quicker than $n \ln n$?

Theorem (Droste, Jansen, Wegener, 2002)

The expected runtime of the (1+1)-EA for OneMaxis $\Omega(n \ln n)$.

Proof Idea

(1) At most $n / 2$ one-bits are created during initialisation with probability at least $1 / 2$ (By symmetry of the binomial distribution)

Theorem (Droste, Jansen, Wegener, 2002)

The expected runtime of the $(1+1)$-EA for OnEMAXis $\Omega(n \ln n)$.

> Theorem (Droste, Jansen, Wegener, 2002)
> The expected runtime of the $(1+1)$-EA for OneMAx is $\Omega(n \log n)$.

Proof Idea

(1) At most $n / 2$ one-bits are created during initialisation with probability at least $1 / 2$ (By symmetry of the binomial distribution).
(2) There is a constant probability that in $c n \ln n$ steps one of the $n / 2$ remaining zero-bits does not flip.

Proof of 2.
$1-1 / n$

Theorem (Droste, Jansen, Wegener, 2002)
The expected runtime of the (1+1)-EA for OneMaxis $\Omega(n \log n)$.

Proof of 2.	
$1-1 / n$	a given bit does not flip
$(1-1 / n)^{t}$	a given bit does not flip in t steps

Theorem (Droste, Jansen, Wegener, 2002)
The expected runtime of the (1+1)-EA for OneMaxis $\Omega(n \log n)$.
Proof of 2.
$1-1 / n$

$(1-1 / n)^{t}$	a given bit does not flip
$1-(1-1 / n)^{t}$	a given bit does not flip in t steps
	it flips at least once in t steps

Motivation OOOOOOO AFL method for Evoritionary A

Tail Tail nequat
oooo Artificial Fitness Leve evels Drift Analy Conclusions
ooooooo

Lower bound for OneMax

Theorem (Droste, Jansen, Wegener, 2002

The expected runtime of the $(1+1)$-EA for OnEMAxis $\Omega(n \log n)$
Proof of 2.

$1-1 / n$	a given bit does not flip
$(1-1 / n)^{t}$	a given bit does not flip in t steps
$1-(1-1 / n)^{t}$	it flips at least once in t steps
$\left(1-(1-1 / n)^{t}\right)^{n / 2}$	$n / 2$ bits flip at least once in t steps

Theorem (Droste, Jansen, Wegener, 2002)

The expected runtime of the $(1+1)$-EA for OneMaxis $\Omega(n \log n)$.
Proof of 2.

$1-1 / n$	a given bit does not flip
$(1-1 / n)^{t}$	a given bit does not flip in t steps
$1-(1-1 / n)^{t}$	it flips at least once in t steps
$\left(1-(1-1 / n)^{t}\right)^{n / 2}$	$n / 2$ bits flip at least once in t steps
$1-\left[1-(1-1 / n)^{t}\right]^{n / 2}$	at least one of the $n / 2$ bits does not flip in t steps

Theorem (Droste, Jansen, Wegener, 2002)
The expected runtime of the (1+1)-EA for OnEMAxis $\Omega(n \log n)$
Proof of 2.

$1-1 / n$	a given bit does not flip
$(1-1 / n)^{t}$	a given bit does not flip in t steps
$1-(1-1 / n)^{t}$	it flips at least once in t steps
$\left(1-(1-1 / n)^{t}\right)^{n / 2}$	$n / 2$ bits flip at least once in t steps
$1-\left[1-(1-1 / n)^{t}\right]^{n / 2}$	at least one of the $n / 2$ bits does not flip in t steps

Set $t=(n-1) \log n$. Then:

$$
\begin{aligned}
& 1-\left[1-(1-1 / n)^{t}\right]^{n / 2}=1-\left[1-(1-1 / n)^{(n-1) \log n}\right]^{n / 2} \geq \\
& \geq 1-\left[1-(1 / e)^{\log n}\right]^{n / 2}=1-[1-1 / n]^{n / 2}= \\
& =1-[1-1 / n]^{n \cdot 1 / 2} \geq 1-(2 e)^{-1 / 2}=c
\end{aligned}
$$

Theorem (Droste, Jansen, Wegener, 2002)

The expected runtime of the (1+1)-EA for OneMaxis $\Omega(n \log n)$.

Proof

(1) At most $n / 2$ one-bits are created during initialisation with probability at least $1 / 2$ (By symmetry of the binomial distribution).
(2) There is a constant probability that in $c n \log n$ steps one of the $n / 2$ remaining zero-bits does not flip

00000000	Evolutionary Algorithms 0000	$\begin{aligned} & \text { Tail Inequaltif } \\ & \text { oooo } \end{aligned}$	Artificial Fitness Levels 0000000000000000000	Drift Analysis -00000000000000000	0000000
AFL method for upper bounds					
Artificial Fitness Levels Exercises:			$\left(\operatorname{LEADINGONES}(x)=\sum_{i=1}^{n} \prod_{j=1}^{i} x[j]\right)$		

Theorem (Droste, Jansen, Wegener, 2002)

The expected runtime of the (1+1)-EA for OneMaxis $\Omega(n \log n)$.

Proof

Theorem

The expected runtime of RLS for LEADINGOnES is $O\left(n^{2}\right)$.

- At most $n / 2$ one-bits are created during initialisation with probability at least $1 / 2$ (By symmetry of the binomial distribution).
(2) There is a constant probability that in $c n \log n$ steps one of the $n / 2$ remaining zero-bits does not flip.
The Expected runtime is:

$$
\begin{gathered}
E[T]=\sum_{t=1}^{\infty} t \cdot p(t) \geq[(n-1) \log n] \cdot p[t=(n-1) \log n] \geq \\
\geq[(n-1) \log n] \cdot\left[(1 / 2) \cdot\left(1-(2 e)^{-1 / 2}\right)=\Omega(n \log n)\right.
\end{gathered}
$$

First inequality: law of total probability
The upper bound given by artificial fitness levels is indeed tight!

Theorem

The expected runtime of RLS for LEADINGONES is $O\left(n^{2}\right)$.
Proof

- Let partition A_{i} contain search points with exactly i leading ones
- To leave level A_{i} it suffices to flip the zero at position $i+1$
- $s_{i}=\frac{1}{n}$ and $s_{i}^{-1}=n$
- $E(T) \leq \sum_{i=1}^{n-1} s_{i}^{-1}=\sum_{i=1}^{n} n=O\left(n^{2}\right)$

Theorem

The expected runtime of RLS for LEADINGONES is $O\left(n^{2}\right)$.

Proof

- Let partition A_{i} contain search points with exactly i leading ones
- To leave level A_{i} it suffices to flip the zero at position $i+1$
- $s_{i}=\frac{1}{n}$ and $s_{i}^{-1}=n$
- $E(T) \leq \sum_{i=1}^{n-1} s_{i}^{-1}=\sum_{i=1}^{n} n=O\left(n^{2}\right)$

Theorem

The expected runtime of the $(1+1)$-EA for LEADINGONES is $O\left(n^{2}\right)$.

Theorem
The expected runtime of RLS for LEADINGOnes is $O\left(n^{2}\right)$.
Proof

- Let partition A_{i} contain search points with exactly i leading ones
- To leave level A_{i} it suffices to flip the zero at position $i+1$
- $s_{i}=\frac{1}{n}$ and $s_{i}^{-1}=n$
- $E(T) \leq \sum_{i=1}^{n-1} s_{i}^{-1}=\sum_{i=1}^{n} n=O\left(n^{2}\right)$

Theorem

The expected runtime of the $(1+1)$-EA for LEADINGONES is $O\left(n^{2}\right)$
Proof Left as Exercise.

	Evolutionary Algorithms 0000	$\begin{aligned} & \text { Tail Inequalities } \\ & \text { oooo } \end{aligned}$	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & \text { oooocooo } \end{aligned}$
AFL method for upper bounds					
Fitness Levels Advanced Exercises (Populations)					

Theorem

The expected runtime of $(1+\lambda)$-EA for LEADINGONES is $O\left(\lambda n+n^{2}\right)$ [Jansen et al., 2005].

Theorem

The expected runtime of $(1+\lambda)$-EA for LEADINGONES is $O\left(\lambda n+n^{2}\right)$ [Jansen et al., 2005].

Theorem

The expected runtime of the $(\mu+1)$-EA for LEADINGONES is $O\left(\mu \cdot n^{2}\right)$.

Proof

Let partition A_{i} contain search points with exactly i leading ones

- To leave level A_{i} it suffices to flip the zero at position $i+1$
- $s_{i}=1-\left(1-\frac{1}{e n}\right)^{\lambda} \geq 1-e^{-\lambda /(e n)}$

$$
\text { (1) } s_{i} \geq 1-\frac{1}{e} \quad \text { Case 1: } \lambda \geq e n
$$

(2) $s_{i} \geq \frac{\lambda}{2 e n} \quad$ Case 2: $\lambda<e n$

- $E(T) \leq \lambda \cdot \sum_{i=1}^{n-1} s_{i}^{-1} \leq \lambda\left(\left(\sum_{i=1}^{n} \frac{1}{c}\right)+\left(\sum_{i=1}^{n} \frac{2 e n}{\lambda}\right)\right)=$ $O\left(\lambda \cdot\left(n+\frac{n^{2}}{\lambda}\right)\right)=O\left(\lambda \cdot n+n^{2}\right)$

Theorem
 The expected runtime of the $(\mu+1)$-EA for LEADINGONES is $O\left(\mu \cdot n^{2}\right)$.

Proof Left as Exercise.

[^0]
Theorem

The expected runtime of the $(\mu+1)$-EA for LEADINGOnES is $O\left(\mu \cdot n^{2}\right)$
Proof Left as Exercise

Theorem

The expected runtime of the $(\mu+1)$-EA for OnEMAxis $O(\mu \cdot n \log n)$

The expected runtime of $(\mu+1)$-EA for LEAdingOnes is $O\left(\mu n \log n+n^{2}\right)$ [Witt, 2006].

$$
\text { D. Sudholt, Tutorial } 2011
$$

Let:

- T_{o} be the expected time for a fraction $\chi(i)$ of the population to be in level A_{i}
- s_{i} be the probability to leave level A_{i} for A_{j} with $j>i$ given $\chi(i)$ in level
A_{i}
- Then:

$$
E(T) \leq \sum_{i=1}^{m-1}\left(\frac{1}{s_{i}}+T_{o}\right)
$$

Theorem

The expected runtime of $(\mu+1)$-EA for LEADINGONES is $O\left(\mu n \log n+n^{2}\right)$ [Witt, 2006].

Proof

- Let partition A_{i} contain search points with exactly i leading ones

Theorem

The expected runtime of $(\mu+1)$-EA for LEAdingOnes is $O\left(\mu n \log n+n^{2}\right)$ [Witt, 2006].

Proof

- Let partition A_{i} contain search points with exactly i leading ones
- To leave level A_{i} it suffices to flip the zero at position $i+1$ of the best individual

Theorem

The expected runtime of $(\mu+1)$-EA for LEAdingOnes is $O\left(\mu n \log n+n^{2}\right)$ [Witt, 2006].

Proof

Let partition A_{i} contain search points with exactly i leading ones

- To leave level A_{i} it suffices to flip the zero at position $i+1$ of the bes individual
We set $\chi(i)=n / \ln n$
Proof
- Let partition A_{i} contain search points with exactly i leading ones
- To leave level A_{i} it suffices to flip the zero at position $i+1$ of the best individual
- We set $\chi(i)=n / \ln n$
- Given j copies of the best individual another replica is created with probability $\frac{j}{\mu}\left(1-\frac{1}{n}\right)^{n} \geq \frac{j}{2 e \mu}$

 Tail Inequalitit oooo Artificial Fitness Leve oocono

Theorem

The expected runtime of $(\mu+1)$-EA for LEAdingOnes is $O\left(\mu n \log n+n^{2}\right)$ [Witt, 2006].

Proof

Let partition A_{i} contain search points with exactly i leading ones

- To leave level A_{i} it suffices to flip the zero at position $i+1$ of the best individual
- We set $\chi(i)=n / \ln n$
- Given j copies of the best individual another replica is created with probability $\frac{j}{\mu}\left(1-\frac{1}{n}\right)^{n} \geq \frac{j}{2 e \mu}$
- $T_{o} \leq \sum_{j=1}^{n / \ln n} \frac{2 e \mu}{j} \leq 2 e \mu \ln n$

$\begin{aligned} & \text { Motivation } \\ & \text { ooooooooo } \end{aligned}$	Evolutionary Algorithms 0000	Tail Inequalities 0000	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & \text { oooooooo } \end{aligned}$
AFL method for parent populations					
Applications to $(\mu+1)$-EA					

Theorem

The expected runtime of $(\mu+1)$-EA for LEADINGONES is $O\left(\mu n \log n+n^{2}\right)$ [Witt, 2006].

Proof

- Let partition A_{i} contain search points with exactly i leading ones
- To leave level A_{i} it suffices to flip the zero at position $i+1$ of the best individual
- We set $\chi(i)=n / \ln n$
- Given j copies of the best individual another replica is created with probability $\frac{j}{\mu}\left(1-\frac{1}{n}\right)^{n} \geq \frac{j}{2 e \mu}$
- $T_{0} \leq \sum_{j=1}^{n / \ln n} \frac{2 e \mu}{j} \leq 2 e \mu \ln n$

$$
\begin{array}{ll}
\text { (1) } s_{i} \geq \frac{n / \ln n}{\mu} \cdot \frac{1}{e n}=\frac{1}{e \mu \ln n} & \text { Case 1: } \mu>\frac{n}{\ln n} \\
\text { (2) } s_{i} \geq \frac{n / \ln n}{\mu} \cdot \frac{1}{e n} \geq \frac{1}{e n} & \text { Case 2: } \mu \leq \frac{n}{\ln n}
\end{array}
$$

Theorem

The expected runtime of $(\mu+1)$-EA for LEAdingOnes is $O\left(\mu n \log n+n^{2}\right)$ [Witt, 2006].

Proof

- Let partition A_{i} contain search points with exactly i leading ones
- To leave level A_{i} it suffices to flip the zero at position $i+1$ of the best individual
- We set $\chi(i)=n / \ln n$

Theorem

The expected runtime of the $(\mu+1)-E A$ for OnEMAxis $O(\mu n+n \log n)$

- Given j copies of the best individual another replica is created with probability $\frac{j}{\mu}\left(1-\frac{1}{n}\right)^{n} \geq \frac{j}{2 e \mu}$
- $T_{o} \leq \sum_{j=1}^{n / \ln n} \frac{2 e \mu}{j} \leq 2 e \mu \ln n$
(1) $s_{i} \geq \frac{n / \ln n}{\mu} \cdot \frac{1}{e n}=\frac{1}{e \mu \ln n} \quad$ Case 1: $\mu>\frac{n}{\ln n}$
(2) $s_{i} \geq \frac{n / \ln n}{\mu} \cdot \frac{1}{e n} \geq \frac{1}{e n} \quad$ Case 2: $\mu \leq \frac{n}{\ln n}$
- $E(T) \leq \sum_{i=1}^{n-1}\left(T_{o}+s_{i}^{-1}\right) \leq \sum_{i=1}^{n}(2 e \mu \ln n+(e n+e \mu \ln n))=$ $n \cdot(2 e \mu \ln n+(e n+e \mu \ln n))=O\left(n \mu \ln n+n^{2}\right)$

Advanced: Fitness Levels for non-Elitist Populations [Lehre, 2011]

New population by sampling and mutating λ parents independently:

Theorem
The expected runtime of the $(\mu+1)$-EA for OnEMAxis $O(\mu n+n \log n)$.
Proof Left as Exercise.

Populations Fitness Levels: Exercise

Theorem ([Lehre, GECCO 2011])
If
C1: for one offspring $\operatorname{Prob}\left(A_{i} \rightarrow A_{i+1} \cup \cdots \cup A_{m}\right) \geq s_{i}$
C2: for one offspring $\operatorname{Prob}\left(A_{i} \rightarrow A_{i} \cup \cdots \cup A_{m}\right) \geq p_{0}$
C3: selection is sufficiently strong: $\beta(\gamma, P) / \gamma \geq(1+\delta) / p_{0}$
C4: population size sufficiently large: $\lambda \geq \frac{2(1+\delta)}{\varepsilon \delta^{2}} \cdot \ln \left(\frac{m}{\min _{i}\left\{s_{i}\right\}}\right)$
then the expected number of function evaluations is at most

$$
O\left(m \lambda^{2}+\sum_{i=1}^{m-1} \frac{1}{s_{i}}\right)
$$

Lower bounds with fitness levels [Sudholt, 2010]

Let $u_{i} \cdot \gamma_{i, j}$ be an upper bound for $\operatorname{Prob}\left(A_{i} \rightarrow A_{j}\right)$ and $\sum_{j=i+1}^{m} \gamma_{i, j}=1$ Assume for all $j>i$ and $0<\chi \leq 1$ that $\gamma_{i, j} \geq \chi \sum_{k=j}^{m} \gamma_{i, k}$. Then
$\mathrm{E}($ optimization time $) \geq \sum_{i=1}^{m-1} \operatorname{Prob}\left(\mathcal{A}\right.$ starts in $\left.A_{i}\right) \cdot \chi \sum_{j=i}^{m-1} \frac{1}{u_{i}}$.
$u_{i}:=$ probability to leave level A_{i};
$\gamma_{i, j}:=$ probability of jumping from A_{i} to A_{j}

- It's a powerful general method to obtain (often) tight upper bounds on the runtime of simple EAs;
- For offspring populations tight bounds can often be achieved with the general method;
- For parent populations takeover times have to be introduced;
- Recent methods have been presented to deal with non-elitism and for lower bounds

 What is Drift ${ }^{1}$ Analysis?

[^1]| $\begin{aligned} & \text { Motivation } \\ & \text { ooooooooo } \end{aligned}$ | Evolutionary Algorithms 0000 | Tail Inequalitics oooo | Artificial Fitness Levels
 0000000000000000000 | Drift Analysis
 000000000000000000 | $\begin{aligned} & \text { Conclusions } \\ & \text { oooooooo } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| What | rift ${ }^{1}$ Analy | | | | |

- Prediction of the long term behaviour of a process X - hitting time, stability, occupancy time etc.
from properties of Δ.
${ }^{1}$ NB! (Stochastic) drift is a different concept than genetic drift in population genetics.

Friday night dinner at the restaurant.
Peter walks back from the restaurant to the hotel

- The restaurant is n meters away from the hotel
- Peter moves towards the hotel of 1 meter in each step

Question

How many steps does Peter need to reach his hotel?

Friday night dinner at the restaurant
Peter walks back from the restaurant to the hotel

- The restaurant is n meters away from the hotel;
- Peter moves towards the hotel of 1 meter in each step

Question

How many steps does Peter need to reach his hotel? n steps

- Define a distance function $d(x)$ to measure the distance from the hotel;

$$
d(x)=x, \quad x \in\{0, \ldots, n\}
$$

(In our case the distance is simply the number of metres from the hotel).

- Estimate the expected "speed" (drift), the expected decrease in distance in one step from the goal;

$$
d\left(X_{t}\right)-d\left(X_{t+1}\right)=\left\{\begin{array}{l}
0, \text { if } X_{t}=0 \\
1, \text { if } X_{t} \in\{1, \ldots, n\}
\end{array}\right.
$$

Time
Then the expected time to reach the hotel (goal) is:

$$
E(T)=\frac{\text { maximum distance }}{d r i f t}=\frac{n}{1}=n
$$

Friday night dinner at the restaurant
Peter walks back from the restaurant to the hotel but had a few drinks.

- The restaurant is n meters away from the hotel;
- Peter moves towards the hotel of 1 meter in each step with probability 0.6
- Peter moves away from the hotel of 1 meter in each step with probability 0.4 .

Question

How many steps does Peter need to reach his hotel?

Friday night dinner at the restaurant.
Peter walks back from the restaurant to the hotel but had a few drinks.

The restaurant is n meters away from the hotel
Peter moves towards the hotel of 1 meter in each step with probability 0.6

- Peter moves away from the hotel of 1 meter in each step with probability 0.4 .

Question

How many steps does Peter need to reach his hotel?
$5 n$ steps
Let us calculate this through drift analysis.

- Define the same distance function $d(x)$ as before to measure the distance from the hotel;

$$
d(x)=x, \quad x \in\{0, \ldots, n\}
$$

(simply the number of metres from the hotel)

- Estimate the expected "speed" (drift), the expected decrease in distance in one step from the goal;

$$
d\left(X_{t}\right)-d\left(X_{t+1}\right)=\left\{\begin{array}{l}
0, \text { if } X_{t}=0 \\
1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.6 \\
-1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.4
\end{array}\right.
$$

- The expected dicrease in distance (drift) is:

$$
E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right)\right]=0.6 \cdot 1+0.4 \cdot(-1)=0.6-0.4=0.2
$$

Time
Then the expected time to reach the hotel (goal) is:

$$
E(T)=\frac{\text { maximum distance }}{d r i f t}=\frac{n}{0.2}=5 n
$$

Motivation 00000000	Evolutionary Algorithms 0000	Tail Inequalitics oooo	Artificial Fitness Levels . 000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & \text { oooooooo } \end{aligned}$
Additive Drift Theorem					
Drift Analysis for Leading Ones					

Theorem
 The expected time for the (1+1)-EA to optimise LEADINGONES is $O\left(n^{2}\right)$

Proof

Theorem (Additive Drift Theorem for Upper Bounds [He and Yao, 2001])

Let $\left\{X_{t}\right\}_{t>0}$ be a Markov process over a set of states S, and $d: S \rightarrow \mathbb{R}_{0}^{+}$a function that assigns a non-negative real number to every state. Let the time to reach the optimum be $T:=\min \left\{t \geq 0: d\left(X_{t}\right)=0\right\}$. If there exists $\delta>0$ such that at any time step $t \geq 0$ and at any state $X_{t}>0$ the following condition holds:

$$
\begin{equation*}
E\left(\Delta(t) \mid d\left(X_{t}\right)>0\right)=E\left(d\left(X_{t}\right)-d\left(X_{t+1}\right) \mid d\left(X_{t}\right)>0\right) \geq \delta \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
E\left(T \mid d\left(X_{0}\right)>0\right) \leq \frac{d\left(X_{0}\right)}{\delta} \tag{2}
\end{equation*}
$$

and

$$
E(T) \leq \frac{E\left(d\left(X_{0}\right)\right)}{\delta}
$$

Theorem
The expected time for the $(1+1)$-EA to optimise LEADINGOnES is $O\left(n^{2}\right)$
Proof
(1) Let $d\left(X_{t}\right)=i$ where i is the number of missing leading ones;

Drift Analysis for Leading Ones

Theorem

The expected time for the (1+1)-EA to optimise LEADINGONES is $O\left(n^{2}\right)$
Proof
(1) Let $d\left(X_{t}\right)=i$ where i is the number of missing leading ones;
(2) The negative drift is 0 since if a leading one is removed from the current solution the new point will not be accepted

$\begin{array}{ll}\text { Motivation } & \begin{array}{ll}\text { Evolutionary Algorithms } \\ \text { Oooooooos } \\ \text { Ooor }\end{array}\end{array}$	Tail Inequalities 0000	Artificial Fitness Levels 0000000000000000000	Drift Analysis o.00000000000000000	Conclusions 0000000
Additive Drift Theorem				
Drift Analysis for Leading Ones				

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGONES is $O\left(n^{2}\right)$

Proof

(1) Let $d\left(X_{t}\right)=i$ where i is the number of missing leading ones;
(2) The negative drift is 0 since if a leading one is removed from the current solution the new point will not be accepted;
(3) A positive drift (i.e. of length 1) is achieved as long as the first 0 is flipped and the leading ones are remained unchanged:

$$
E\left(\Delta^{+}(t)\right)=\sum_{k=1}^{n-i} k \cdot\left(p\left(\Delta^{+}(t)\right)=k\right) \geq 1 \cdot 1 / n \cdot(1-1 / n)^{n-1} \geq 1 /(e n)
$$

Drift Analysis for Leading Ones

Theorem

The expected time for the (1+1)-EA to optimise LEADINGONES is $O\left(n^{2}\right)$

Proof

(1) Let $d\left(X_{t}\right)=i$ where i is the number of missing leading ones
(2) The negative drift is 0 since if a leading one is removed from the current solution the new point will not be accepted;
(3) A positive drift (i.e. of length 1) is achieved as long as the first 0 is flipped and the leading ones are remained unchanged

$$
E\left(\Delta^{+}(t)\right)=\sum_{k=1}^{n-i} k \cdot\left(p\left(\Delta^{+}(t)\right)=k\right) \geq 1 \cdot 1 / n \cdot(1-1 / n)^{n-1} \geq 1 /(e n)
$$

(9) Hence, $E\left[\Delta(t) \mid d\left(X_{t}\right)\right] \geq 1 /(e n)=\delta$

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGOnES is $O\left(n^{2}\right)$

Proof

(1) Let $d\left(X_{t}\right)=i$ where i is the number of missing leading ones;
(2) The negative drift is 0 since if a leading one is removed from the current solution the new point will not be accepted;
(3) A positive drift (i.e. of length 1) is achieved as long as the first 0 is flipped and the leading ones are remained unchanged:

$$
E\left(\Delta^{+}(t)\right)=\sum_{k=1}^{n-i} k \cdot\left(p\left(\Delta^{+}(t)\right)=k\right) \geq 1 \cdot 1 / n \cdot(1-1 / n)^{n-1} \geq 1 /(e n)
$$

(1) Hence, $E\left[\Delta(t) \mid d\left(X_{t}\right)\right] \geq 1 /(e n)=\delta$
(0) The expected runtime is (i.e. Eq. (6)):

$$
E\left(T \mid d\left(X_{0}\right)>0\right) \leq \frac{d\left(X_{0}\right)}{\delta} \leq \frac{n}{1 /(e n)}=e \cdot n^{2}=O\left(n^{2}\right)
$$

Exercises

Theorem

The expected time for RLS to optimise LEADINGOnES is $O\left(n^{2}\right)$
Proof Left as exercise.

Theorem

Let $\lambda \geq e n$. Then the expected time for the $(1+\lambda)-E A$ to optimise LeadingOnes is $O(\lambda n)$

Proof

Theorem

The expected time for RLS to optimise LEADIngOnes is $O\left(n^{2}\right)$
Proof

Theorem

The expected time for RLS to optimise LEADINGONES is $O\left(n^{2}\right)$

Proof Left as exercise

Theorem

Let $\lambda \geq e n$. Then the expected time for the $(1+\lambda)$-EA to optimise LeadingOnes is $O(\lambda n)$

Proof Left as exercise

Theorem

Let $\lambda<e n$. Then the expected time for the $(1+\lambda)-E A$ to optimise LeadingOnes is $O\left(n^{2}\right)$

Proof

Theorem

Let $\lambda=n$. Then the expected time for the $(1, \lambda)-E A$ to optimise LEADINGOnES is $O\left(n^{2}\right)$

Proof
Proof Left as exercise.

Theorem

Let $\lambda \geq e n$. Then the expected time for the $(1+\lambda)-E A$ to optimise LEADINGONES is $O(\lambda n)$

Proof Left as exercise.

Theorem

Let $\lambda<e n$. Then the expected time for the $(1+\lambda)-E A$ to optimise
LeadingOnes is $O\left(n^{2}\right)$
Proof Left as exercise.

Theorem

Let $\lambda=n$. Then the expected time for the (1, λ)-EA to optimise LeadingOnes is $O\left(n^{2}\right)$

Theorem (Additive Drift Theorem for Lower Bounds [He and Yao, 2004])
Let $\left\{X_{t}\right\}_{t \geq 0}$ be a Markov process over a set of states S, and $d: S \rightarrow \mathbb{R}_{0}^{+}$a function that assigns a non-negative real number to every state. Let the time to reach the optimum be $T:=\min \left\{t \geq 0: d\left(X_{t}\right)=0\right\}$. If there exists $\delta>0$ such that at any time step $t \geq 0$ and at any state $X_{t}>0$ the following condition holds:

$$
E\left(\Delta(t) \mid d\left(X_{t}\right)>0\right)=E\left(d\left(X_{t}\right)-d\left(X_{t+1}\right) \mid d\left(X_{t}\right)>0\right) \leq \delta
$$

then
and

$$
E\left(T \mid X_{0}>0\right) \geq \frac{d\left(X_{0}\right)}{\delta}
$$

Hence,

$$
E(\text { generations }) \leq \frac{\text { max distance }}{\text { drift }}=\frac{n}{\Omega(1)}=O(n)
$$

and,

$$
E(T) \leq n \cdot E(\text { generations })=O\left(n^{2}\right)
$$

Theorem
The expected time for the ($1+1$)-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.

Motivation
ouoooo

Evolutio
ooo

0000 Artificial Fitness Levels
oooo

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.
Sources of progress
(1) Flipping the leftmost zero-bit;
(2) Bits to right of the leftmost zero-bit that are one-bits (free riders). Proof
(1) Let the current solution have $n-i$ leading ones (i.e. $1^{n-i} 0 *$)

Theorem

The expected time for the (1+1)-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.
Sources of progress
(1) Flipping the leftmost zero-bit;
(2) Bits to right of the leftmost zero-bit that are one-bits (free riders).

Proof

	0000	Triil lee OOOO	Artificial Fitness Levels 0000000000000000000	andy	
	0000		0000000000000000000	000000000000	

Theorem

The expected time for the ($1+1$)-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.

Sources of progress

(1) Flipping the leftmost zero-bit
(2) Bits to right of the leftmost zero-bit that are one-bits (free riders).

Proo

(1) Let the current solution have $n-i$ leading ones (i.e. $1^{n-i} 0 *$).
(2) We define the distance function as the number of missing leading ones, i.e. $d(X)=i$.

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.

Sources of progress

(1) Flipping the leftmost zero-bit;
(2) Bits to right of the leftmost zero-bit that are one-bits (free riders).

Proof

(1) Let the current solution have $n-i$ leading ones (i.e. $1^{n-i} 0 *$)
(2) We define the distance function as the number of missing leading ones, i.e. $d(X)=i$
(3) The $n-i+1$ bit is a zero;

Theorem

The expected time for the (1+1)-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.
Sources of progress
(1) Flipping the leftmost zero-bit;
(2) Bits to right of the leftmost zero-bit that are one-bits (free riders).

Proof
(1) Let the current solution have $n-i$ leading ones (i.e. $1^{n-i} 0 *$).
(2) We define the distance function as the number of missing leading ones, i.e. $d(X)=i$.
(3) The $n-i+1$ bit is a zero
(9) let $E[Y]$ be the expected number of one-bits after the first zero (i.e. the free riders).

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.
Sources of progress
(1) Flipping the leftmost zero-bit;
(2) Bits to right of the leftmost zero-bit that are one-bits (free riders). Proof
(1) Let the current solution have $n-i$ leading ones (i.e. $1^{n-i} 0 *$)
(2) We define the distance function as the number of missing leading ones, i.e $d(X)=i$
(3) The $n-i+1$ bit is a zero;
(1) let $E[Y]$ be the expected number of one-bits after the first zero (i.e. the free riders).
(0) Such $i-1$ bits are uniformely distributed at initialisation and still are!

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.

Sources of progress

(1) Flipping the leftmost zero-bit
(2) Bits to right of the leftmost zero-bit that are one-bits (free riders).

Proo

(1) Let the current solution have $n-i$ leading ones (i.e. $1^{n-i} 0 *$).
(2) We define the distance function as the number of missing leading ones, i.e. $d(X)=i$.
(3) The $n-i+1$ bit is a zero
(3) let $E[Y]$ be the expected number of one-bits after the first zero (i.e. the free riders)
(0) Such $i-1$ bits are uniformely distributed at initialisation and still are

Drift Theorem for LeadingOnes (lower bound)

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGOnES is $\Omega\left(n^{2}\right)$.
The expected number of free riders is

$$
E[Y]=\sum_{k=1}^{i-1} k \cdot \operatorname{Pr}(Y=k)=\sum_{k=1}^{i-1} \operatorname{Pr}(Y \geq k)=\sum_{k=1}^{i-1}(1 / 2)^{k} \leq 1
$$

Motwation $\begin{aligned} & \text { Evout } \\ & \text { Odditive D Difit Theorem }\end{aligned}$

\section*{frionary Algo} orithms | TaII neq |
| :--- |
| 0000 | Inequalities

0.00 Artificial Fitness Leve
ooooooo
 Drift Analysis

Drift Theorem for LeadingOnes (lower bound)

Theorem

The expected time for the $(1+1)$-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.
The expected number of free riders is:

$$
E[Y]=\sum_{k=1}^{i-1} k \cdot \operatorname{Pr}(Y=k)=\sum_{k=1}^{i-1} \operatorname{Pr}(Y \geq k)=\sum_{k=1}^{i-1}(1 / 2)^{k} \leq 1
$$

- The negative drift is 0 ;
- Let $p(A)$ be the probability that the first zero-bit flips into a one-bit.

Theorem

The expected time for the (1+1)-EA to optimise LEADINGONES is $\Omega\left(n^{2}\right)$.
The expected number of free riders is:

$$
E[Y]=\sum_{k=1}^{i-1} k \cdot \operatorname{Pr}(Y=k)=\sum_{k=1}^{i-1} \operatorname{Pr}(Y \geq k)=\sum_{k=1}^{i-1}(1 / 2)^{k} \leq 1
$$

- The negative drift is 0 ;
- Let $p(A)$ be the probability that the first zero-bit flips into a one-bit.
- The positive drift (i.e. the decrease in distance) is bounded as follows:

$$
E\left(\Delta^{+}(t)\right) \leq p(A) \cdot E\left[\Delta^{+}(t) \mid A\right]=1 / n \cdot(1+E[Y]) \leq 2 / n=\delta
$$

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.
(1) Let $d\left(X_{t}\right)=i$ where i is the number of zeroes in the bitstring;

The negative drift is 0 ;

- Let $p(A)$ be the probability that the first zero-bit flips into a one-bit.
- The positive drift (i.e. the decrease in distance) is bounded as follows:

$$
E\left(\Delta^{+}(t)\right) \leq p(A) \cdot E\left[\Delta^{+}(t) \mid A\right]=1 / n \cdot(1+E[Y]) \leq 2 / n=\delta
$$

- Since, also at initialisation the expected number of free riders is less than 1, it follows that $E\left[d\left(X_{0}\right)\right] \geq n-1$
By applying the Drift Theorem we get

$$
E(T) \geq \frac{E\left(d\left(X_{0}\right)\right.}{\delta}=\frac{n-1}{2 / n}=\Omega\left(n^{2}\right)
$$

Motivation 0000000	Evolutionary Algorithms 0000	Tail Inequalities	Artificial Fitness Levels 0000000000000000000	Drift Analysis 00000000000000000	Conclusions 000000
Multiplicative Drift Theorem					

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.

(1) Let $d\left(X_{t}\right)=i$ where i is the number of zeroes in the bitstring;
(2) The negative drift is 0 since solution with less one-bits will not be accepted;

Motivation Evolutionary Algorithms 00000000 OOOO	Tail Inequalities 0000	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	Conclusions oooooooo
Multiplicative Dritt Theorem				
Drift Analysis for OneMax				

Lets calculate the runtime of the $(1+1)$-EA using the additive Drift Theorem
(1) Let $d\left(X_{t}\right)=i$ where i is the number of zeroes in the bitstring;
(2) The negative drift is 0 since solution with less one-bits will not be accepted;
(3) A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$
E(\Delta(t))=E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right) \mid d\left(X_{t}\right)=i\right] \geq 1 \cdot \frac{i}{n}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{i}{e n} \geq \frac{1}{e n}:=\delta
$$

00000000 O 000
Multipicative Drift Th

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.
(1) Let $d\left(X_{t}\right)=i$ where i is the number of zeroes in the bitstring;
(2) The negative drift is 0 since solution with less one-bits will not be accepted;
(3) A positive drift is achieved as long as a 0 is flipped and the ones remain unchanged:

$$
E(\Delta(t))=E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right) \mid d\left(X_{t}\right)=i\right] \geq 1 \cdot \frac{i}{n}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{i}{e n} \geq \frac{1}{e n}:=\delta
$$

(1) The expected initial distance is $E\left(d\left(X_{0}\right)\right)=n / 2$

The expected runtime is (i.e. Eq. (6)):

$$
E\left(T \mid d\left(X_{0}\right)>0\right) \leq \frac{E\left[\left(d\left(X_{0}\right)\right]\right.}{\delta} \leq \frac{n / 2}{1 /(e n)}=e / 2 \cdot n^{2}=O\left(n^{2}\right)
$$

We need a different distance function

Motivation Evolutionary Algorithms 00000000 0000	Taiil Inequalities 0000	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	Conclusions ooooooo
Multiplicative Drift Theorem				
Drift Analysis for OneMax				

(1) Let $g\left(X_{t}\right)=\ln (i+1)$ where i is the number of zeroes in the bitstring;
(2) For $x \geq 1$, it holds that $\ln (1+1 / x) \geq 1 / x-1 /\left(2 x^{2}\right) \geq 1 /(2 x)$;

(9) Let $g\left(X_{t}\right)=\ln (i+1)$ where i is the number of zeroes in the bitstring
(2) For $x \geq 1$, it holds that $\ln (1+1 / x) \geq 1 / x-1 /\left(2 x^{2}\right) \geq 1 /(2 x)$;
(3) The distance decreases as long as a 0 is flipped and the ones remain unchanged:

$$
E(\Delta(t))=E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right) \mid d\left(X_{t}\right)=i \geq 1\right]
$$

$$
\geq \frac{i}{e n}(\ln (i+1)-\ln (i))=\frac{i}{e n} \ln \left(1+\frac{1}{i}\right) \geq \frac{i}{e n} \frac{1}{2 i}=\frac{1}{2 e n}:=\delta
$$

(1) Let $g\left(X_{t}\right)=\ln (i+1)$ where i is the number of zeroes in the bitstring;
(2) For $x \geq 1$, it holds that $\ln (1+1 / x) \geq 1 / x-1 /\left(2 x^{2}\right) \geq 1 /(2 x)$
(3) The distance decreases as long as a 0 is flipped and the ones remain unchanged:

$$
E(\Delta(t))=E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right) \mid d\left(X_{t}\right)=i \geq 1\right]
$$

$$
\geq \frac{i}{e n}(\ln (i+1)-\ln (i))=\frac{i}{e n} \ln \left(1+\frac{1}{i}\right) \geq \frac{i}{e n} \frac{1}{2 i}=\frac{1}{2 e n}:=\delta
$$

(9) The initial distance is $d\left(X_{0}\right) \leq \ln (n+1)$

The expected runtime is (i.e. Eq. (6)):

$$
E\left(T \mid d\left(X_{0}\right)>0\right) \leq \frac{d\left(X_{0}\right)}{\delta} \leq \frac{\ln (n+1)}{1 /(2 e n)}=O(n \ln n)
$$

If the amount of progress depends on the distance from the optimum we need to use a logarithmic distance!

Theorem (Multiplicative Drift, [Doerr et al., 2010])

Let $\left\{X_{t}\right\}_{t \in \mathbb{N}_{0}}$ be random variables describing a Markov process over a finite state space $S \subseteq \mathbb{R}$. Let T be the random variable that denotes the earliest point in time $t \in \mathbb{N}_{0}$ such that $X_{t}=0$.
If there exist $\delta, c_{\min }, c_{\text {max }}>0$ such that
(1) $E\left[X_{t}-X_{t+1} \mid X_{t}\right] \geq \delta X_{t}$ and
(2) $c_{\text {min }} \leq X_{t} \leq c_{\text {max }}$,
for all $t<T$, then

$$
E[T] \leq \frac{2}{\delta} \cdot \ln \left(1+\frac{c_{\max }}{c_{\min }}\right)
$$

Motivation Evolutionary Algorithms 00000000 0000	Tail Inequalities oooo 0000	Artificial Fitness Levels 0000000000000000000	Drift Analysis 000000000000000000	$\begin{aligned} & \text { Conclusions } \\ & \text { oooooooo } \end{aligned}$
Multiplicative Drift Theorem				

Theorem

The expected time for the $(1+1)$-EA to optimise OneMaxis $O(n \ln n)$

Theorem

The expected time for the $(1+1)$-EA to optimise OnEMAxis $O(n \ln n)$
Proof

Proo

- Distance: let X_{t} be the number of zeroes at time step t;
- $E\left[X_{t+1} \mid X_{t}\right] \leq X_{t}-1 \cdot \frac{X_{t}}{e n}=X_{t} \cdot\left(1-\frac{1}{e n}\right)$
- $E\left[X_{t}-X_{t+1} \mid X_{t}\right] \leq X_{t}-X_{t} \cdot\left(1-\frac{1}{e n}\right)=\frac{X_{t}}{e n}\left(\delta=\frac{1}{e n}\right)$
- $1=c_{\min } \leq X_{t} \leq c_{\max }=n$

Hence,

$$
E[T] \leq \frac{2}{\delta} \cdot \ln \left(1+\frac{c_{\max }}{c_{\min }}\right)=2 e n \ln (1+n)=O(n \ln n)
$$

Theorem
The expected time for RLS to optimise OneMaxis $O(n \log n)$ Proof

Theorem

The expected time for RLS to optimise OneMaxis $O(n \log n)$
Proof Left as exercise.
Theorem
Let $\lambda \geq e n$. Then the expected time for the ($1+\lambda$)-EA to optimise OnEMaxis $O(\lambda n)$

Proof

Yotivation 000000 Evolutionary Algortiz 0000
 Exercises

Theorem
 The expected time for RLS to optimise OneMaxis $O(n \log n)$
 Proof Left as exercise
 Theorem
 Let $\lambda \geq$ en. Then the expected time for the $(1+\lambda)$-EA to optimise OnEMAxis $O(\lambda n)$
 Proof Left as exercise.
 Theorem
 Let $\lambda<e n$. Then the expected time for the $(1+\lambda)$-EA to optimise OnEMAXis $O(n \log n)$

Proof

Theorem

The expected time for RLS to optimise OneMaxis $O(n \log n)$

Proof Left as exercise

Theorem

Let $\lambda \geq e n$. Then the expected time for the $(1+\lambda)-E A$ to optimise OnfMaxis $O(\lambda n)$

Proof Left as exercise

Theorem

Let $\lambda<e n$. Then the expected time for the $(1+\lambda)-E A$ to optimise OnEMAXis $O(n \log n)$

Proof Left as exercise

Friday night dinner at the restaurant.
Peter walks back from the restaurant to the hotel but had too many drinks.

- The restaurant is n meters away from the hotel

Peter moves towards the hotel of 1 meter in each step with probability 0.4

- Peter moves away from the hotel of 1 meter in each step with probability 0.6.

Question

How many steps does Peter need to reach his hotel?

Friday night dinner at the restaurant
Peter walks back from the restaurant to the hotel but had too many drinks

- The restaurant is n meters away from the hotel;
- Peter moves towards the hotel of 1 meter in each step with probability 0.4
- Peter moves away from the hotel of 1 meter in each step with probability 0.6 .

Question

How many steps does Peter need to reach his hotel?
at least $2^{c n}$ steps with overwhelming probability (exponential time) We need Negative-Drift Analysis.

Theorem (Simplified Negative-Drift Theorem, [Oliveto and Witt, 2011])

Suppose there exist three constants δ, ϵ, r such that for all $t \geq 0$
(1) $E\left(\Delta_{t}(i)\right) \geq \epsilon$ for $a<i<b$,
(2) $\operatorname{Prob}\left(\left|\Delta_{t}(i)\right|=-j\right) \leq \frac{1}{(1+\delta)^{j-r}}$ for $i>a$ and $j \geq 1$.

Then

$$
\operatorname{Prob}\left(T^{*} \leq 2^{\alpha^{*}(b-a)}\right)=2^{-\Omega(b-a)}
$$

- Define the same distance function $d(x)=x, x \in\{0, \ldots, n\}$ (metres from the hotel) $(b=n-1, a=1)$.

Negative-Drift Analysis: Example (3)

- Define the same distance function $d(x)=x, x \in\{0, \ldots, n\}$ (metres from the hotel) $(b=n-1, a=1)$.
- Estimate the increase in distance from the goal (negative drift);

$$
d\left(X_{t}\right)-d\left(X_{t+1}\right)=\left\{\begin{array}{l}
0, \text { if } X_{t}=0 \\
1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.6 \\
-1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.4
\end{array}\right.
$$

- Define the same distance function $d(x)=x, x \in\{0, \ldots, n\}$ (metres from the hotel) $(b=n-1, a=1)$.
- Estimate the increase in distance from the goal (negative drift);

$$
d\left(X_{t}\right)-d\left(X_{t+1}\right)=\left\{\begin{array}{l}
0, \text { if } X_{t}=0 \\
1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.6 \\
-1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.4
\end{array}\right.
$$

- The expected increase in distance (negative drift) is: (Condition 1)

$$
E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right)\right]=0.6 \cdot 1+0.4 \cdot(-1)=0.6-0.4=0.2
$$

- Probability of jumps (i.e. $\left.\operatorname{Prob}\left(\Delta_{t}(i)=-j\right) \leq \frac{1}{(1+\delta)^{j-r}}\right)$ (set $\delta=r=1$) (Condition 2):

$$
\operatorname{Pr}\left(\Delta_{t}(i)=-j\right)=\left\{\begin{array}{l}
0<(1 / 2)^{j-1}, \text { if } j>1 \\
0.6<(1 / 2)^{0}=1, \text { if } j=1
\end{array}\right.
$$

OOOOOOO 0000
Simplified Negative Drift Theorem

- Define the same distance function $d(x)=x, x \in\{0, \ldots, n\}$ (metres from the hotel) $(b=n-1, a=1)$.
- Estimate the increase in distance from the goal (negative drift);

$$
d\left(X_{t}\right)-d\left(X_{t+1}\right)=\left\{\begin{array}{l}
0, \text { if } X_{t}=0 \\
1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.6 \\
-1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.4
\end{array}\right.
$$

- The expected increase in distance (negative drift) is: (Condition 1)

$$
E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right)\right]=0.6 \cdot 1+0.4 \cdot(-1)=0.6-0.4=0.2
$$

Negative-Drift Analysis: Example (3)

- Define the same distance function $d(x)=x, x \in\{0, \ldots, n\}$ (metres from the hotel) $(b=n-1, a=1)$.
- Estimate the increase in distance from the goal (negative drift);

$$
d\left(X_{t}\right)-d\left(X_{t+1}\right)=\left\{\begin{array}{l}
0, \text { if } X_{t}=0 \\
1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.6 \\
-1, \text { if } X_{t} \in\{1, \ldots, n\} \text { with probability } 0.4
\end{array}\right.
$$

- The expected increase in distance (negative drift) is: (Condition 1)

$$
E\left[d\left(X_{t}\right)-d\left(X_{t+1}\right)\right]=0.6 \cdot 1+0.4 \cdot(-1)=0.6-0.4=0.2
$$

- Probability of jumps (i.e. $\left.\operatorname{Prob}\left(\Delta_{t}(i)=-j\right) \leq \frac{1}{(1+\delta)^{j-r}}\right)$ (set
$\delta=r=1$) (Condition 2):

$$
\operatorname{Pr}\left(\Delta_{t}(i)=-j\right)=\left\{\begin{array}{l}
0<(1 / 2)^{j-1}, \text { if } j>1 \\
0.6<(1 / 2)^{0}=1, \text { if } j=1
\end{array}\right.
$$

Then the expected time to reach the hotel (goal) is:

$$
\operatorname{Pr}\left(T \leq 2^{c(b-a)}\right)=\operatorname{Pr}\left(T \leq 2^{c(n-2)}\right)=2^{-\Omega(n)}
$$

Theorem (Oliveto, Witt, Algorithmica 2011)
Let $\eta>0$ be constant. Then there is a constant $c>0$ such that with probability $1-2^{-\Omega(n)}$ the $(1+1)$-EA on NeEDLE creates only search points with at most $n / 2+\eta n$ ones in $2^{c n}$ steps

Theorem (Oliveto,Witt, Algorithmica 2011)

Let $\eta>0$ be constant. Then there is a constant $c>0$ such that with probability $1-2^{-\Omega(n)}$ the $(1+1)$-EA on NeEDLE creates only search points with at most $n / 2+\eta n$ ones in $2^{c n}$ steps.

Proof Idea

- By Chernoff bounds the probability that the initial bit string has less than $n / 2-\gamma n$ zeroes is $e^{-\Omega(n)}$
- we set $b:=n / 2-\gamma n$ and $a:=n / 2-2 \gamma n$ where $\gamma:=\eta / 2$;

Proof of Condition 1

$$
E(\Delta(i))=\frac{n-i}{n}-\frac{i}{n}=\frac{n-2 i}{n} \geq 2 \gamma=\epsilon
$$

Proof of Condition 2

$$
\operatorname{Prob}(|\Delta(i)| \leq-j) \leq\binom{ n}{j}\left(\frac{1}{n}\right)^{j} \leq \frac{n^{j}}{j!}\left(\frac{1}{n}\right)^{j} \frac{1}{j!} \leq\left(\frac{1}{2}\right)^{j-1}
$$

This proves Condition 2 by setting $\delta=r=1$.

Motivation Evolutionary Algor ooooooo 0 oor oor

$$
\operatorname{Trap}(x)= \begin{cases}n+1 & \text { if } x=0^{n} \\ \operatorname{OnEMax}(x) & \text { otherwise }\end{cases}
$$

Negative Drift Theorem
Exercise: Trap Functions

$$
\operatorname{Trap}(x)= \begin{cases}n+1 & \text { if } x=0^{n} \\ \operatorname{OnEMAX}(x) & \text { otherwise } .\end{cases}
$$

Theorem

With overwhelming probability at least $1-2^{-\Omega(n)}$ the $(1+1)$-EA requires $2^{\Omega(n)}$ steps to optimise Trap.

Proof Left as exercise

Overview

- Additive Drift Analysis (upper and lower bounds);

Multiplicative Drift Analysis
Simplified Negative-Drift Theorem;

Advanced Lower bound Drift Techniques

- Drift Analysis for Stochastic Populations (mutation) [Lehre, 2010]
- Simplified Drift Theorem combined with bandwidth analysis (mutation + crossover stochastic populations $=$ GAs) [Oliveto and Witt, 2012],

Overview

- Basic Probability Theory
- Tail Inequalities
- Artificial Fitness Levels
- Drift Analysis

Other Techniques (Not covered)

- Family Trees [Witt, 2006]
- Gambler's Ruin \& Martingales [Jansen and Wegener, 2001]

MST	$\begin{aligned} & (1+1) \text { EA } \\ & (1+\lambda) \text { EA } \\ & 1 \text {-ANT } \end{aligned}$	
Max. Clique	($1+1$) EA	$\Theta\left(n^{5}\right)$
(rand. planar)	(16n+1) RLS	$\Theta\left(n^{5 / 3}\right)$
Eulerian Cycle	(1+1) EA	$\Theta\left(m^{2} \log m\right)$
Partition	(1+1) EA	$4 / 3$ approx, competitive avg.
Vertex Cover	($1+1$) EA	$e^{\Omega(n)}$, arb. bad approx.
Set Cover	$\begin{aligned} & (1+1) \text { EA } \\ & \text { SEMO } \end{aligned}$	$e^{\Omega(n)}$, arb. bad approx.
Intersection of $p \geq 3$ matroids	(1+1) EA	$\begin{aligned} & 1 / 1 \text {-approximation in } \\ & O\left(\|E\|^{p+2} \log \left(\|E\| w_{\text {max }}\right)\right) \end{aligned}$
U10/FSM conf.	($1+1$) EA	$e^{\Omega(n)}$

See [Oliveto et al., 2007] for an overview.

[Neumann and Witt, 2010, Auger and Doerr, 2011, Jansen, 2013]

Auger，A．and Doerr，B．（2011） Theory of Randomized Search Heuristics：Foundations and Recent Developments．

Bäck，T．（1993） Optimal mutation rates in genetic search Pptimal mutation rates in genetic search．
In In Proceedings of the Fifth International Conference on Genetic Algorithms（ICGA），pages 2－8
Doerr，B．，Johannsen，D．，and Winzen，C．（2010） Multiplicative drift analysis． I Proceedings of the 12 th annual conference on Genetic and evolutionary computation，GECCO＇10，pages
Droste，S．，Jansen，T．，and Wegener，I．（1998）． A rigorous complexity analysis of the $(1+1)$ evolutionary algorithm for separable functions with boolean inputs．
Evolutionary Computation，6（2）：185－196
T．Droste，S．，Jansen，T．，and Wegener，I．（2002）． On the analysis of the（1＋1）evolutionary algorithm
Theoretical Computer Science，276（1－2）：51－81．
．Goldberg，D．E．（1989）．
Genetic Algorithms for Search，Optimization，and Machine Learning． Addison－Wesley．
He，J．and Yao，X．（2001）．
Drift analysis and average time complexity of evolutionary algorithm Artificial Intelligence，127（1）：57－85．

Motivation oooooooo Further reading
 References III

Lehre，P．K．（2011） Fitness－levels for non－elitist populations． Proceedings of the 13th annual conference on Genetic and evolutionary computation，GECCO＇11，page
Neumann，F．and Witt，C．（2010）．
Bioinspired Computation in Combinatorial Optimization：Algorithms and Their Computational Complexity． Bioinspired Computation in Combinatorial Optimization：Algorit
Springer－Verlag New York，Inc．，New York，NY，USA，1st edition
國 Oliveto，P．and Witt，C．（2012）．
On the analysis of the simple genetic algorithm（to appear）．
In Proceedings of the 12 th annual conference on Genetic and evolutionary computation，GECCO＇12 in Proceedings
Oliveto，P．S．，He，J．，and Yao，X．（2007）
Time complexity of evolutionary algorithms for combinatorial optimization：A decade of results． Time complexity of evolutionary algorithms for combinatorial optimiz．
International Journal of Automation and Computing， 4 （3）：281－293．
Oliveto，P．S．and Witt，C．（2011） Simplified drift analysis for proving lower bounds inevolutionary computation．

Reeves，C．R．and Rowe，J．E．（2002） Genetic Algorithms：Principles and Perspectives：A Guide to GA Theory
Kluwer Academic Publishers．Norwell．MA USA．
Rudolph，G．（1998）．
Finite Markov chain results in evolutionary computation：A tour d＇horizo
Fundamenta Informaticae $35(1-4) \cdot 67-89$

國 He，J．and Yao，X．（2004）．
A study of drift analysis for estimating computation time of evolutionary algorithms．
Natural Computing：an international journal，3（1）：21－35．
囯 Holland，J．H．（1992）
Adaptation in Natural and Artificial Systems：An Introductory Analysis with Applications to Biology， Control，and Artificial Intelligence．
囯 Jansen，T．（2013）
Analyzing Evolutionary Algorithms．
Springer－Verlag New York，Inc．，New York，NY，USA，1st edition．
（國 Jansen，T．，Jong，K．A．D．，and Wegener，I．A．（2005）． On the choice of the offspring population size in evolutionary algorithms．
Evolutionary Computation，13（4）：413－440．
围 Jansen，T．and Wegener，I．（2001）． Evolutionary algorithms－how to cope with plateaus of constant fitness and when to reject strings of the same fitness
IEEE Trans．
國 Lehre，P．K．（2010） Negative drift in populations．
In PPSN（1），pages 244－253．

目 Sucholt，D．（2010） General lower bounds for the running time of evolutionary algorithms． In PPSN（1），pages 124－133
Witt，C．（2006）．
Runtime analysis of the $(\mu+1)$ ea on simple pseudo－boolean functions evolutionary computation． Runtime analysis of the $(\mu+1)$ ea on sim pseudo－boolean functions evolutionary computation．
In GECCO＇06：Proceedings of the 8th annual conference on Genetic and evolutionary computation， In GECCO O6：Proceedings of the 8th annu
$651-658$ ，New York，NY，USA．ACM Press．

[^0]: Theorem
 The expected runtime of the $(\mu+1)-E A$ for OnEMAx is $O(\mu \cdot n \log n)$.

[^1]: NB! (Stochastic) drift is a different concept than genetic drift in population genetics.

